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Abstract 

When asked to list semantic features for concrete concepts, 
participants list many features for some concepts and few for 
others. Concepts with many semantic features have been 
reported to be processed faster in lexical decision, naming, 
and semantic decision tasks (Pexman, Holyk, & Monfils, 
2003; Pexman, Lupker, & Hino, 2002). Using a much larger 
and better controlled set of items in Experiment 1, we 
replicated the number-of-features (NoF) effect in both lexical 
and semantic decision. We then investigated the relationship 
between NoF and feature type (shared vs. distinctive). Shared 
features are those which appear in many concepts (<has four 
legs>) whereas distinctive features appear in few concepts 
(<moos>). Keeping total NoF constant, decision latencies 
were shorter for concepts with many shared features versus 
those with few shared features in lexical and semantic 
decision, with a larger difference obtaining in semantic 
decision (Experiment 2). Manipulating shared or distinctive 
features to create low versus high levels of NoF revealed a 
much larger NoF advantage for concepts with many shared 
features than for those with many distinctive features 
(Experiment 3). It is concluded that shared features play a 
dominant role in the NoF effect. 

Introduction 
People use language to convey messages, and inherent in 
our ability to understand these messages is our ability to 
compute the meaning of individual words. The goal of the 
current research is to further our understanding of the 
computation of word meaning. In particular, we investigate 
an emerging finding that the 'richness' of a word's semantic 
representation influences performance in speeded tasks 
involving the computation of its meaning. 

One example of such a result is the ambiguity advantage 
(Hino & Lupker, 1996). Specifically, words with multiple 
meanings (bat) are responded to faster than words with 
single meanings (wristwatch) in tasks such as lexical 
decision (Does the letter string refer to an English word?) 
and naming (Read the presented word aloud). Words with 
multiple meanings are assumed to have richer semantic 
representations because multiple instead of single meanings 
have to be encoded. 

Similarly, words that refer to concrete objects (robin) are 
responded to faster than words that refer to abstract concepts 
(justice). Again, this is true in both lexical decision (Binder, 
Westbury, McKiernan, Possing, & Medler, 2005) and 
naming (Strain, Patterson, & Seidenberg, 1995). A number 
of researchers argue that this difference can be explained in 

terms of a richer semantic representation for concrete words. 
For example, Paivio (1986) claimed that in addition to being 
able to verbally reason about both concrete and abstract 
things, people can also generate mental iconic images for 
concrete words because they refer to physical things in the 
world which we can perceive. He argued that this additional 
information associated with concrete words makes their 
mental representations richer and easier to process. 

Plaut and Shallice (1993) approached this issue using a 
feature-based representation of word meaning. They 
hypothesized that a major difference between concrete and 
abstract words is the number of features. That is, although 
we can easily generate many features for concrete entities 
and objects (robin = <has wings>, <flies>, <eats worms>, 
<has a red breast>), it is much harder to generate features 
for abstract words. They reported that patients with deep 
dyslexia make more errors when reading abstract words 
than when reading concrete words. Using a distributed 
representation of word meaning where concrete words had 
on average more features than abstract words, they 
simulated deep dyslexia in a connectionist network by 
randomly removing connections between and within layers 
of the network. They found that because concrete words had 
more features in the model and thus generated stronger 
attractors than abstract words, concrete words were less 
susceptible to network damage. 

All of these explanations rest on the assumption that the 
underlying representations of multiple versus single 
meaning words and concrete versus abstract words differ. 
Although this assumption may be correct, to test the 
richness hypothesis directly, it would be better to have 
representations of word meaning that are generated (as 
directly as possible) from people's actual conceptual 
representations of words. 

McRae, Cree, Seidenberg, and McNorgan (in press) 
presented participants with living (robin) and nonliving 
(chair) thing concepts and had them list descriptive features 
for each. For example, for robin, participants listed features 
such as those presented above. Of course, people cannot 
introspectively tell us everything that exists in their 
conceptual representations, but we can assume that what 
they do tell us provides a reasonable window into their 
actual underlying conceptual representations (Medin, 1989). 

McRae et al. (in press) used 725 participants to collect 
these semantic feature production norms for 541 concepts. 
This large set was used to define a semantic space 
consisting of 2526 featural dimensions, and enabled the 



calculation of many statistics such as correlations between 
features and feature distinctiveness. In conjunction with 
various other measures (word frequency, word length, 
conceptual familiarity, orthographic and phonological 
neighborhoods), these empirically-derived conceptual 
representations provide a rich basis for testing theories of 
semantic representation and computation. 

For our purposes, one advantage of the concepts 
contained in McRae et al.'s (in press) norms is that each 
refers to a concrete object (living or nonliving) and each 
has, as much as possible, a single meaning. Although 
facilitation has been obtained for multiple over single 
meaning words and for concrete over abstract words, it is 
not clear whether this facilitation is due to the difference in 
richness or to some other confounding variable. For 
instance, it is possible that words with multiple meanings 
are processed more quickly not only because their 
representations are richer, but also because people have 
thought about them more deeply during learning because it 
is necessary to tease apart their multiple meanings. Also, 
because of the way that we interact with concrete objects 
but not with abstract concepts, it is likely that concrete 
representations span different parts of the brain (sensory and 
motor). On the other hand, if it really is a difference in 
semantic richness that is underlying these facilitation 
effects, then we expect to find similar results when 
comparing words that differ in semantic richness within the 
same word type, specifically, the single meaning concrete 
nouns found in McRae et al.'s norms. 

Pexman and colleagues' stimuli were drawn from 
McRae, de Sa, and Seidenberg's (1997) norms, which 
included 190 of the 541 concepts found in McRae et al.'s (in 
press) norms. They began their investigation by generating 
two sets of concepts. One group contained 25 low number-
of-features (low NoF) concepts, and the other contained 25 
high number-of-features (high NoF) concepts. For their 
lexical decision tasks, they also generated two sets of 50 
nonword filler items. The first contained pronounceable 
pseudowords whose spelling and sound do not correspond 
to any English word (merod), and the second contained 
pseudohomophones whose spelling does not correspond to 
any English word but whose sound does (keap). In their first 
study, they combined the low and high NoF concepts with 
the pseudoword fillers and found that lexical decision 
latencies were shorter for high than for low NoF concepts. 
This effect was even larger when the fillers were 
pseudohomophones. They reported similar results in a 
subsequent study in which they asked participants to name 
the same low and high NoF items aloud (Pexman, Lupker, 
& Hino, 2002). 

Pexman, Holyk, and MonFils (2003) used all 190 
concepts in the norms and generated 190 filler abstract 
concepts. They had participants perform a semantic 
concreteness decision task in which participants decided 
whether each word referred to a concrete object or to 
something abstract. Whereas a number of studies had found 
processing differences between concrete and abstract 

concepts, Pexman et al. found semantic richness (NoF) 
effects within the concrete concepts. 

A closer investigation of the items used in Pexman et 
al.'s (2002; 2003) studies, however, reveals that some 
variables known to influence word processing (word 
frequency and word length) were not perfectly controlled, 
and were confounded with the number-of-features 
manipulation. Although Pexman and colleagues addressed 
this issue by partialling out the influence of these variables 
using multiple regression, it is possible that the observed 
NoF effects were due to the combined influence of these 
confounded variables. 

Experiment 1 
The purpose of Experiment 1 is to test whether Pexman et 
al.'s (2002; 2003) findings replicate in both lexical and 
concreteness decision. It was possible to construct larger 
lists of concepts that are better balanced on more variables 
because we had access to a larger set of norms (541 instead 
of 190 concepts). 

Method 
Participants. Thirty-four undergraduate students at the 
University of Western Ontario participated for course credit. 
Seventeen were assigned to lexical decision and 17 to 
semantic decision. In all Experiments reported herein, all 
participants had either normal or corrected-to-normal visual 
acuity and were native English speakers. 
 
Materials. Two sets of target words referring to concrete 
objects were generated from McRae et al.'s (in press) 
semantic feature production norms. One set consisted of 64 
low NoF concepts and the other consisted of 64 high NoF 
concepts. The two sets were matched carefully on a number 
of potentially confounding variables (Table 1). These 
included word frequency, which was computed using the 
natural logarithm of the singular plus plural counts taken 
from the British National Corpus (BNC) online search 
engine (Burnard, 2000). Concept familiarity was measured 
by asking 20 participants to rate, on a 9-point scale, with 1 
corresponding to not at all familiar, and 9 corresponding to 
highly familiar, 'How familiar are you with the thing the 
word refers to?'. Number of letters, number of phonemes, 
number of syllables, and orthographic neighborhood size 
(Coltheart, Davelaar, Jonasson, & Besner, 1977) were all 
computed using the N-watch program (Davis, 2005). 
Semantic density was calculated from McRae et al.'s norms. 
In the norms, each feature is a vector of production 
frequencies (the number of participants listing that feature 
for each specific concept) across the 541 concepts. 
Proportion of shared variance for each feature pair was 
calculated by squaring the correlation between each feature-
vector pair. Only features occurring in three or more 
concepts were included to attempt to avoid spurious 
correlations. Semantic density for a concept is the sum of 
the proportion of shared variances for each pair of features 
that are included in that concept. Thus, semantic density 



provides a measure of the degree to which a concept's 
features are intercorrelated. Finally, because the extent to 
which different types of concrete objects are processed 
differentially is unclear (Laws & Gale, 2002), we also 
matched the groups according to the following category 
breakdown: creatures, fruits and vegetables, and non-living 
things. 
 

Table 1: Characteristics of Experiment 1 Stimuli  
________________________________________________ 

Variable Low NoF High NoF 
 M SE M SE 
________________________________________________ 

Number of features (NoF) 9.0 0.2 15.7 0.3 
ln(BNC) frequency 6.4 0.2 6.4 0.2 
Familiarity 5.7 0.2 5.7 0.2 
Number of letters 5.4 0.2 5.4 0.2 
Number of phonemes 4.4 0.2 4.5 0.2 
Number of syllables 1.6 0.1 1.7 0.1 
Orth. neighborhood size (N) 4.6 0.8 4.4 0.7 
Semantic density 156.9 20.1 155.3 11.3 
Number of creatures 18 – 21 – 
Number of fruits/vegetables 11 – 8 – 
Number of nonliving things 35 – 35 – 
________________________________________________ 
Note. NoF = Number of Features, ln = the natural logarithm 
(loge), BNC = British National Corpus 
 

Lexical decision filler items consisted of 128 
pronounceable pseudowords and semantic decision filler 
items consisted of 128 abstract concepts. Both sets were 
matched with the target items on the mean number of 
letters. 
 
Procedure. Participants were tested individually using 
PsyScope (Cohen, MacWhinney, Flatt, & Provost, 1993) on 
a Macintosh computer equipped with a CMU button box. 
Letters were approximately 0.5 cm high, black, and 
presented on a white background. One item was presented at 
a time and participants made either a lexical or semantic 
decision depending on which task they were assigned. 
Participants used the index finger of their dominant hand for 
a 'yes' response and the index finger of their nondominant 
hand for a 'no' response. Decision latencies were measured 
from the onset of the stimulus presentation to the onset of 
the button press. Items were presented until the participant 
made a decision and were presented in a different random 
order for each participant. Participants were instructed to 
make their decisions as quickly and accurately as possible. 

Results and Discussion 
Separate subject (t1) and item (t2) analyses were performed 
on decision latencies for concrete concepts.1 Errors (lexical 

                                                           
1 Error analyses were performed for all Experiments, but the 
differences between conditions were generally small and where 

decision: 4.6% of trials; semantic decision: 3.9%) were 
removed from the analyses and correct decisions that 
exceeded 3 standard deviations above the grand mean for 
the target words were replaced with the cutoff value (lexical 
decision: 1.8%; semantic decision: 1.4%). The independent 
variable was NoF (low versus high) which was within-
subjects and between-items. 

Lexical decision latencies to high NoF concepts (M = 
593 ms, SE = 20 ms) were 30 ms shorter than to low NoF 
concepts (M = 623 ms, SE = 19 ms), t1(16) = 7.37, p < .001, 
t2(126) = 2.34, p < .05. Semantic decision latencies to high 
NoF concepts (M = 637 ms, SE = 14 ms) were 29 ms shorter 
than to low NoF concepts (M = 666 ms, SE = 16 ms), t1(16) 
= 4.27, p < .01, t2(126) = 2.51, p < .05. Thus, using this 
tightly controlled and larger set of items, we replicated 
Pexman et al.'s (2002; 2003) number-of-features effect. 
Words rich in semantic representation (as measured by the 
number of features listed in the norms) were responded to 
faster than words that are less rich. 

In the remainder of this article, we investigate a potential 
source of the NoF effect by contrasting shared versus 
distinctive feature types. Shared features are those that occur 
in many concepts (<has four legs> and <is hard>) whereas 
distinctive features are those that occur in few concepts 
(<moos> and <oinks>). Shared features denote 
commonalities among concepts, and thus indicate ways in 
which concepts are similar to one another. In contrast, 
distinctive features denote differences, and thus help people 
to discriminate among concepts. 

The relative contribution of these two feature types to 
processing appears to be task dependant. For instance, 
Humphreys, Riddoch, and Quinlan (1988) found that people 
were faster to name pictures of objects belonging to 
categories whose exemplars were structurally dissimilar 
(clothing and furniture) than pictures of objects from 
structurally similar categories (insects, fruits, and 
vegetables). However, when asking participants to make 
broad-level classifications of these same stimuli, Riddoch 
and Humphreys (1987) found that they could do so more 
quickly when the pictures of objects belonged to categories 
whose exemplars were structurally similar than when they 
were dissimilar. Thus, distinctive features appear to 
facilitate processing when the task requires distinguishing 
an item from among similar items (picture naming), 
whereas shared features appear to facilitate processing when 
the item has to be identified as a member of a larger 
category (broad level classification). 

In the cases of deciding whether a string of letters is a 
word, or refers to a concrete object, it is possible, at least 
theoretically, that people can initiate their response prior to 
precisely identifying or distinguishing a concept from 
among similar concepts. As such, it seems reasonable to 
predict that shared features contribute more than distinctive 
features to the processing advantage found in the number-

                                                                                                  
significant differences were observed, there was no speed-accuracy 
tradeoff. Therefore, error analyses are not presented. 



of-features effect. That is, the more shared features a 
concept has, the more likely it is to be processed quickly.  

Cree and McRae (2003) defined a feature as shared if it 
was listed for more than 2 of the 541 concepts and 
distinctive if it was listed for only 1 or 2 concepts. They also 
computed feature distinctiveness as a continuous dimension 
(the multiplicative inverse of the number of concepts in 
which a feature occurred), but for present purposes we focus 
on the shared versus distinctive binary measure. 

Looking back at Experiment 1 and Pexman et al.'s 
(2002) studies, we noted that both shared and distinctive 
features were higher for the high NoF concepts. Therefore, 
these Experiments provide no insight into the relative 
contributions of shared versus distinctive features. One way 
to test the relative contributions is to directly contrast the 
number of shared versus distinctive features while holding 
NoF constant. Another way is to create the NoF 
manipulation by altering either the number of shared or 
distinctive features while holding the other constant. 

Experiment 2 
The purpose of Experiment 2 is to investigate whether 
lexical and semantic decisions are systematically influenced 
when the number of shared (and distinctive) features is 
varied. Therefore, shared (and distinctive) features were 
manipulated while holding NoF constant. 

Method 
Participants. Forty-nine undergraduate students at the 
University of Western Ontario received $10 for their 
participation. Twenty-five were assigned to lexical decision 
and 24 to semantic decision. 
 
Materials. Two sets of target words referring to concrete 
objects were generated from McRae et al.'s (in press) norms. 
One set consisted of 55 low number-of-shared-features 
concepts and the other consisted of 55 high number-of-
shared-features concepts. The two sets were tightly matched 
on the same variables described in Experiment 1 plus NoF. 

Lexical decision filler items consisted of 110 
pronounceable pseudowords and semantic decision filler 
items consisted of 110 abstract concepts. Both sets were 
matched with the target items on the mean number of 
letters. 
 
Procedure. The procedure was identical to Experiment 1. 

Results and Discussion 
Errors (lexical decision: 3.6%; semantic decision: 3.8%) 

again were removed from the analyses and correct decisions 
that exceeded 3 standard deviations above the grand mean 
for the target concepts were replaced with the cutoff value 
(1.6% of trials for both lexical and semantic decision). The 
independent variable was number-of-shared-features (low 
versus high) which was within-subjects and between-items. 

Lexical decision latencies to concepts with a high 
number-of-shared-features (M = 544 ms, SE = 12 ms) were 

11 ms shorter than to those with a low number-of-shared-
features (M = 555 ms, SE = 13 ms), which was significant 
by subjects, t1(24) = 4.60, p < .001, but not by items, t2(108) 
= 1.07, p > .2. Semantic decision latencies to concepts with 
a high number-of-shared-features (M = 714 ms, SE = 29 ms) 
were 42 ms shorter than to those with a low number-of-
shared-features (M = 756 ms, SE = 31 ms), t1(23) = 6.17, p 
< .001, t2(108) = 2.18, p < .05. 

Thus, increasing the number of shared features facilitates 
both lexical and semantic decision, although the degree of 
facilitation is greater for semantic decision. Obtaining a 
larger effect in semantic decision is not particularly 
surprising. Although there was no difference in effect size 
between lexical (30 ms) and semantic (29 ms) decision in 
Experiment 1, a number of studies have found stronger 
effects of semantic manipulations on semantic than lexical 
decision tasks (McRae & Boisvert, 1998; Becker, 
Moscovitch, Behrmann, & Joordens, 1997). Although it is 
clear that participants must compute the meaning of a word 
to decide whether it refers to something that is concrete or 
abstract, computation of meaning may be less strongly 
related to making a lexical decision (Pexman et al., 2002). 
That is, it appears that lexical decisions can be made on the 
basis of some combination of orthographic, phonological, 
and semantic knowledge. 

Experiment 3 
The purpose of Experiment 3 is to investigate whether 
lexical and semantic decisions are systematically influenced 
when the number of shared and distinctive features is 
manipulated while keeping the other constant. 

Method 
Participants. Eighty-nine undergraduate students at the 
University of Western Ontario received partial course credit 
for their participation. Forty-five were assigned to lexical 
decision and 44 to semantic decision. 
 
Materials. Four sets of 20 words referring to concrete 
objects were generated. In the first two sets, the number-of-
distinctive-features was held constant while the number-of-
shared-features was manipulated. In the other two sets, the 
number-of-shared-features was held constant and the 
number-of-distinctive-features was manipulated. Again, 
these four sets were tightly matched on the same variables 
described in Experiment 1. 

Lexical decision filler items consisted of 80 
pronounceable pseudowords and semantic decision filler 
items consisted of 80 abstract concepts. Both sets were 
matched with the target items on the mean number of letters. 
 
Procedure. The procedure was identical to Experiment 1. 

Results and Discussion 
Errors (lexical decision: 3.3%; semantic decision: 4.7%) 
were removed from the analyses and correct decisions that 
exceeded 3 standard deviations above the grand mean for 
the target concepts were replaced with the cutoff value 
(1.7% of trials for both lexical and semantic decision). The 



independent variables were type of manipulated feature 
(shared versus distinctive) and NoF (low versus high), both 
of which were within-subjects and between-items. Mean 
decision latencies are presented in Table 2. 

In lexical decision, feature type interacted with NoF by 
subjects, F1(1, 44) = 7.59, p < .01, but not by items, F2(1, 
76) = 1.27, p > .2. Planned comparisons revealed that 
decision latencies to high NoF concepts were marginally 
shorter than to low NoF concepts when shared features were 
manipulated, F1(1, 86) = 13.19, p < .05, F2(1, 76) = 1.76, p 
> .1. There was no NoF difference when distinctive features 
were manipulated, F1(1, 86) < 1, F2(1, 76) < 1. 

Collapsed across feature type, decision latencies were 10 
ms shorter for high NoF (M = 598 ms, SE = 9 ms) than for 
low NoF concepts (M = 608 ms, SE = 9 ms), which was 
significant by subjects, F1(1, 44) = 5.65, p < .05, but not by 
items, F2(1, 76) < 1. Collapsed across NoF, decision 
latencies were 10 ms shorter for concepts with distinctive 
features manipulated (M = 598 ms, SE = 8 ms) than for 
those with shared features manipulated (M = 608 ms, SE = 9 
ms), which was significant by subjects, F1(1, 44) = 6.37, p < 
.05, but not by items, F2(1, 76) < 1. 

In semantic decision, the interaction between 
manipulated feature type and NoF was significant by 
subjects, F1(1, 43) = 15.98, p < .001, and marginal by items, 
F2(1, 76) = 2.54, p > .1. Planned comparisons revealed that, 
when number of shared features was manipulated, decision 
latencies to high NoF concepts were shorter than to low 
NoF concepts, F1(1, 85) = 63.03, p < .01, F2(1, 76) = 9.59, p 
< .01. However, when number of distinctive features was 
manipulated, the NoF effect was significant by subjects, 
F1(1, 85) = 4.65, p < .05, but not by items, F2(1, 76) < 1. 

Collapsed across feature type, decision latencies were 51 
ms shorter for high NoF concepts (M = 713 ms, SE = 13 ms) 
than for low NoF concepts (M = 764 ms, SE = 14 ms), F1(1, 
43) = 53.59, p < .001, F2(1, 76) = 7.67, p < .01. Collapsed 
across NoF, decision latencies were 27 ms shorter for 
concepts with distinctive features manipulated (M = 725 ms, 
SE = 13 ms) than for concepts with shared features 
manipulated (M = 752 ms, SE = 14 ms), which was 
significant by subjects, F1(1, 43) = 26.16, p < .001, but not 
by items, F2(1, 76) = 2.12, p > .1. 

As in Experiment 2, Experiment 3 found that increasing 
the number of shared features marginally decreased lexical 
decision latencies and significantly decreased semantic 
decision latencies. It was also found that increasing the 
number of distinctive features did not decrease lexical 
decision latencies, but did marginally decrease semantic 
decision latencies although the effect was smaller than for 
shared features. This again suggests that, at least in these 
tasks, shared features play a stronger role than distinctive 
features in the number-of-features effect. 

Table 2: Decision latencies (ms) for Experiment 3 
________________________________________________ 

 Manipulated Feature Type 
 ________________________________ 

 Shared Distinctive 
 M SE M SE 
________________________________________________ 

Lexical Decision 
 Low NoF 621 13 596 12 
 High NoF 596 14 600 12 
 Difference 25 * -4 
Semantic Decision 
 Low NoF 792 19 736 19 
 High NoF 711 18 714 19 
 Difference 81 ** 22 * 
________________________________________________ 
Note. NoF = Number of Features, * = significant by 
subjects, ** = significant by subjects and items 

General Discussion 
The present experiments demonstrate that the richness of a 
word's semantic representation, in terms of the number of 
features, influences speeded decisions involving the 
computation of its meaning. Using empirically-derived 
feature lists, Pexman and colleagues found that concepts 
with many features were responded to faster than concepts 
with few features, and this was taken as evidence of a 
processing advantage for concepts rich in semantic 
representation. We extended this research in two ways. 
First, Experiment 1 showed that the effect is robust when 
using large lists of items that are tightly controlled on many 
variables. Second, Experiments 2 and 3 showed that 
increasing the number of shared features facilitates 
processing more than does increasing the number of 
distinctive features. 

Age of Acquisition 
A number of researchers have shown that words learned 
earlier in life are responded to faster than words learned 
later. These age of acquisition (AoA) effects have been 
obtained in a number of tasks, including lexical decision, 
naming, and semantic decision, and using both words and 
pictures of objects as stimuli (see Brysbaert & Ghyselinck, 
in press, for a review). 

To determine whether this factor might have played a 
role here, we collected AoA ratings for all 541 concepts in 
the norms after conducting the above studies. Because the 
stimuli used in all Experiments were extremely well 
matched on variables strongly correlated with AoA, such as 
frequency (r = -.48), and subjective familiarity (r = -.65), 
with the exception of a minimal difference in Experiment 1 
(0.6 years), there were no significant mean AoA rating 
differences between groups. These results suggest that our 
findings are robust with respect to AoA, but we are 



currently conducting a follow-up study better equating for 
AoA in Experiment 1. 

Shared versus Distinctive Features 
As previously noted, other researchers have also found that 
shared features facilitate processing. In Riddoch and 
Humphreys (1987), pictures of exemplars taken from 
categories that are composed of numerous structurally 
similar items were categorized faster than those from 
structurally distinct categories. Although their study 
involved the categorization of pictures, there is a nice 
parallel between their findings and the current ones. In the 
present research, the degree to which features are shared 
was computed with respect to 541 concrete concepts. 
Therefore, in terms of the present (concreteness decision) 
task, the concepts that possess numerous shared features are 
precisely the ones most similar to other concrete objects.  
Thus, based on Riddoch and Humphreys' results, one would 
expect that concepts that are similar to others (many shared 
features) are categorized fastest. 

Interestingly, Humphreys et al. (1988) also found the 
reverse effect – an advantage for pictures with little contour 
overlap – when participants were asked to name the object 
at the basic level (table) instead of categorizing it 
(furniture). This suggests that the reported advantage of 
shared over distinctive features in the number-of-features 
effect might be task dependent. That is, it is possible that 
performing a task that requires distinguishing an item from 
among similar items at the semantic level (e.g., picture 
naming) will produce longer decision latencies for concepts 
with many shared features. This hypothesis remains to be 
tested. 
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