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a b s t r a c t

When asked to list semantic features for concrete concepts, participants list many features for
some concepts and few for others. Concepts with many semantic features are processed fas-
ter in lexical and semantic decision tasks [Pexman, P. M., Lupker, S. J., & Hino, Y. (2002). The
impact of feedback semantics in visual word recognition: Number-of-features effects in lexical
decision and naming tasks. Psychonomic Bulletin & Review,9, 542–549; Pexman, P. M., Holyk, G.
G., & MonFils, M.-H. (2003). Number-of-features effects and semantic processing. Memory &
Cognition,31, 842–855]. Using bothlexical and concreteness decision tasks, we provided further
insight into these number-of-features (NoF) effects. We began by replicating the effect using a
larger and better controlled set of items. We then investigated the relationship between NoF
and feature distinctiveness and found that features shared by numerous concrete concepts
such as <has four legs> facilitate decisions to a greater extent than do distinctive features such
as <moos>. Finally, we showed that NoF effects are carried by shared visual form and surface,
encyclopedic, tactile, and taste knowledge. We propose a decision-making account of these
results, rather than one based on the computation of word meaning.

� 2008 Elsevier Inc. All rights reserved.
People use language every day to convey messages, and quickly to words having richer semantic representations

inherent in our ability to understand these messages is our
ability to compute the meaning of individual words. The
computation of word meaning has been studied from a
number of perspectives, including conceptual and linguistic
development, the ability of normal adults to produce and
understand language, neuropsychological impairments fol-
lowing brain injury, and computational modeling of all of
these phenomena. One factor that has emerged as important
in understanding the computation of word meaning is the
richness of a word’s semantic representation. Specifically,
in many experimental tasks, participants respond more
. All rights reserved.
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(Borowsky & Mason, 1996; de Groot, 1989; Hino & Lupker,
1996; James, 1975;Pexman, Lupker, & Hino, 2002). The goal
of the present research is to further our understanding of the
nature of word meaning by investigating how a particular
aspect of semantic richness (the number of features a con-
cept has) influences performance in two speeded tasks: lex-
ical and concreteness decision. Study 1 is a replication of
number-of-feature (NoF) effects using extremely carefully
controlled materials. Studies 2 and 3 establish that feature
distinctiveness matters in that the number of a concept’s
features that are shared by other concepts is an important
determinant of NoF effects. Study 4 takes a modality-specific
approach and shows that shared visual form and surface
features, encyclopedic features, tactile features, and taste
features underlie NoF effects. Finally, we argue that NoF
effects are driven primarily by decision processes, rather
than the activation of meaning per se.

Semantic richness

Semantic richness an important topic of study because
understanding its impact has implications for theories of
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1 Although ambiguous concept names were avoided as much as possible,
some do exist in the norms given that such a large proportion of English
words are ambiguous. Noun–verb ambiguities such as hammer were dealt
with by asking participants in the norming task to focus on the noun
meaning, and the resulting features show that they did. Some noun–noun
ambiguities were identified a priori, and a disambiguating cue was provided
(e.g., bat—baseball and bat—animal). However, none of these items were
used in the current studies. For ambiguities not identified by the
researchers a priori (e.g., due to slang as in pig), participants rarely provided
features relevant to the other meaning.
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semantic memory. Some models of semantic memory as-
sume a localist representation of concepts whereby the
meaning of a word such as robin is represented by a sin-
gle node in a network (Collins & Quillian, 1969; McNa-
mara, 1992; Page, 2000). Other models, however,
assume a distributed representation of concepts whereby
a word’s meaning is represented over multiple nodes in a
network, each of which can be activated to varying de-
grees (Masson, 1995; Plaut & Shallice, 1993). Although
the debate between local versus distributed representa-
tions is longstanding, with respect to semantic represen-
tations the balance of evidence appears to have tipped
in favor of distributed models. (In fact, Page is careful to
describe localist models as being characterized by the
presence of localist representations, rather than the ab-
sence of distributed representations, thus blurring the
distinction between the two types of models.) In general,
the fact that words vary in terms of their degree of
semantic richness, and the finding that semantic richness
influences processing, seem more consistent with a dis-
tributed view of semantic memory because distributed
representational systems more naturally encode graded
representations. Furthermore, a distributed feature-based
view of semantic memory leads to studying variables that
would not be important in a localist scheme.

Semantic richness correlates with two central proper-
ties of word meaning, ambiguity and concreteness. Some
words such as bowl are ambiguous in that they have multi-
ple meanings, whereas others such as tent are unambigu-
ous in that they have a single meaning. It has been
assumed that ambiguous words have richer semantic rep-
resentations because multiple meanings must be repre-
sented. Using lexical decision and naming tasks, Hino and
Lupker (1996) found an ambiguity advantage whereby
ambiguous words were responded to more quickly than
unambiguous words (see also Jastrzembski, 1981; Kellas,
Ferraro, & Simpson, 1988; Rubenstein, Garfield, & Millikan,
1970), suggesting that the meanings of ambiguous words
may be computed more rapidly.

Interestingly, Hino, Pexman, and Lupker (2006) demon-
strated that an ambiguity advantage does not arise in a
semantic categorization task. Logically, however, the dis-
appearance of the ambiguity advantage in these types of
tasks should not be surprising given the decision-making
problems created by ambiguous words. That is, the multi-
ple meanings of a word typically do not support the same
semantic decision (e.g., bat—is it an animal?), creating
competition during the decision-making process. What
this result does underline, therefore, is the importance of
considering the impact of decision-making processes in
many of these word recognition tasks, a point that is cen-
tral to this article.

A second relevant finding is that response latencies
for concrete words such as robin are shorter than for ab-
stract words such as justice in tasks such as lexical deci-
sion (Binder, Westbury, McKiernan, Possing, & Medler,
2005) and naming (Strain, Patterson, & Seidenberg,
1995). A number of researchers have argued that this
difference can be explained in terms of richer semantic
representations for concrete words (Paivio, 1986; Plaut
& Shallice, 1993).
An empirically based featural representation of word
meaning

One way in which semantic richness effects has been
studied is in terms of featural information. Although
feature-based representations have proven fruitful in
many ways, often their implementations are based on
computer or experimenter-generated semantic represen-
tations and thus lack validation. To generate feature-
based representations with increased psychological
validity, a first approximation is to ask people what they
know about the things to which various words refer. Of
course, people cannot introspectively tell us everything
that exists in their conceptual representations, but we
can assume that what they do tell us provides a window
into their actual underlying conceptual representations
(Medin, 1989).

McRae, Cree, Seidenberg, and McNorgan (2005)
adopted just such an approach. For both living (robin)
and nonliving (chair) things, they had participants list
descriptive features. For example, for robin, participants
listed features such as <has wings>, <flies>, <eats
worms>, and <has a red breast>. In total, 725 partici-
pants contributed to these semantic feature production
norms for 541 concepts. This large set was used to define
a psychological semantic space consisting of over 2000
features, and enabled the calculation of many statistics
such as correlations between features and feature dis-
tinctiveness. In conjunction with various other measures
(e.g., word frequency, word length, conceptual familiar-
ity, orthographic and phonological neighborhoods), these
empirically derived conceptual representations provide a
rich basis for testing theories of semantic representation
and computation.

In McRae et al.’s (2005) norms, each word refers to a
concrete object (living or nonliving) and each has, as much
as possible, a single meaning.1 This minimizes potential dif-
ferences among concepts, and allows a somewhat different
definition and operationalization of semantic richness, the
number of features (NoF) a concept is deemed to have.
Importantly for this article, the norms also allow us to inves-
tigate the impact of the types of features that may drive
these effects. That is, it may be the case that semantic rich-
ness effects are not simply due to additional features; rather,
the types of features may matter. Furthermore, the types of
features may interact with the manner in which the infor-
mation is being used. In terms of cognitive experiments,
the types of features may interact with the task under
consideration.
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Probing NoF effects

Using McRae, de Sa, and Seidenberg’s (1997) norms
(which are a subset of McRae et al.’s, 2005, norms), Pexman
et al. (2002) operationalized semantic richness as the num-
ber of features listed by participants. If richness underlies
the processing advantage observed for ambiguous versus
unambiguous words, and abstract versus concrete words,
then the same advantage should be found when comparing
words that differ in number of features.

Pexman et al. (2002) generated two sets of concepts
using the 190 concepts in McRae et al.’s (1997) norms.
One set contained 25 low number-of-features (low NoF)
concepts, and the other contained 25 high number-of-fea-
tures (high NoF) concepts. They also generated two sets of
50 nonword filler items. The first contained pronounceable
nonwords whose spelling and sound do not correspond to
any English word, such as meap, whereas the second con-
tained pseudohomophones, nonwords whose spelling does
not correspond to any English word, but whose sound
does, such as keap. When the low and high NoF concepts
were combined with the pronounceable nonwords, lexical
decision latencies were shorter for high than for low NoF
concepts. This effect was larger when pseudohomophones
were used. Similar results were obtained when partici-
pants named the same low and high NoF items aloud.

Pexman, Holyk, and MonFils (2003) investigated the
NoF effect using tasks more directly involving semantics.
With the same stimuli described above, participants were
faster to read high NoF words than low NoF words in a
self-paced reading task when the sentence was incongru-
ent (‘‘After a heavy snowfall, Joel has to wear his airplane”),
but not when it was highly congruent (‘‘After the crash,
Bob was nervous about getting on an airplane”), nor mod-
erately congruent (‘‘When I go home, I tend to travel by air-
plane”). In addition, using all 190 concrete concepts
available at the time in McRae et al.’s (1997) norms,
Pexman et al. had participants decide whether each word
referred to a concrete object or to something abstract
(e.g., justice). NoF was a significant predictor of decision
latencies for concrete objects.

These findings invite questions regarding precisely
what aspects of concepts are driving the NoF effects. That
is, do all features matter equally? Do some types of fea-
tures such as visual parts, functions, or characteristic
behaviors, matter more than others? A number of recent
studies demonstrate that not all types of features are cre-
ated equal. For example, differential influences of whether
a feature is distinctive to a concept, such as <moos> for
cow, or is shared by many concepts, such as <has legs>,
have been shown. Distinctiveness effects have been found
in feature verification tasks (Cree, McNorgan, & McRae,
2006; Randall, Moss, Rodd, Greer, & Tyler, 2004), picture
naming (Humphreys, Riddoch, & Quinlan, 1988), and
semantic categorization of pictures (Riddoch & Humph-
reys, 1987). Given that distinctiveness matters in a number
of tasks, it is possible that features influence NoF effects
differentially depending on whether they are distinctive
or shared. Furthermore, as is discussed in more detail in
the introduction to Study 2, the influence of this factor var-
ies systematically as a function of the task. Therefore, in
Studies 2 and 3, we tested whether the NoF effect depends
on whether features are distinctive to a particular concept
or are shared among concepts.

A second factor that has been shown to be important in
numerous recent studies of semantic memory involves
modality-specific aspects of concepts. That is, rather than
concepts being represented in an amodal store in which
information regarding the perceptual experience is ab-
stracted away, recent evidence suggests that concepts are
distributed across brain regions that represent various per-
ceptual modalities. Functional magnetic resonance imag-
ing studies demonstrate that modality-specific aspects of
concrete concepts are activated when a picture is viewed
or a word is read (Goldberg, Perfetti, & Schneider, 2006;
Martin & Chao, 2001). Behavioral experiments have pro-
vided further evidence that concepts are distributed across
modality-specific informational and neural regions (Pe-
cher, Zeelenberg, & Barsalou, 2003). Modality specificity
is also an important aspect of most accounts of category-
specific semantic deficits (Garrard, Lambon Ralph, Hodges,
& Patterson, 2001; Simmons & Barsalou, 2003).

Using linguistically based features for establishing fac-
tors such as the NoF seems, at first blush, to correspond
to assuming amodal representations. However, features
can be classified as belonging to specific perceptual modal-
ities, and thus be used as a basis for modality-specific rep-
resentations. For example, Cree and McRae (2003)
classified all of the features in McRae et al.’s (2005) norms
into a nine-way feature type taxonomy based on the cur-
rent state of the art in neuroscience and cognitive neuro-
psychology. These feature types included, for example,
visual form and surface features, tactile features, functional
features, taste features, and encyclopedic features. Their
relative salience was crucial in accounting for the behav-
ioral trends observed in patients with category-specific
semantic deficits. Given the centrality of modality-specific
aspects of concepts to conceptual processing, it seems
likely that features indexing different types of knowledge
may play differential roles in the facilitation found in stud-
ies of NoF effects. For example, people’s knowledge about
how a living or nonliving thing looks might be particularly
important information, and thus play a critical role. There-
fore, in Study 4, we analyzed whether features that corre-
spond to different types of knowledge contribute
differentially to NoF effects. These analyses provide insight
into both NoF effects and the nature of semantic
representations.

Study 1

The purpose of Study 1 was to establish further the
baseline empirical phenomena by testing whether Pexman
et al.’s (2002, 2003) results replicate in both lexical and
concreteness decision tasks using improved sets of items.
A close investigation of the items used in Pexman et al.’s
(2002, 2003) studies reveals that some variables known
to influence word processing (word frequency and word
length) were not perfectly equated between the high and
low NoF word sets, and that the differences favored the
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high NoF items. Although Pexman et al. addressed this
issue by partialing out the influence of these variables
using multiple regression, it may be that the observed
NoF effects were due to the combined influence of these
confounded variables. It was possible to construct larger
lists of concepts (64 versus 25) that are better balanced
on a larger set of variables because there now exists a
larger set of norms (McRae et al., 2005, containing 541 con-
cepts versus McRae et al., 1997, containing 190 concepts).

Study 1A

Methods
Participants. Seventeen undergraduate students at the Uni-
versity of Western Ontario received partial course credit
for their participation. In all experiments reported herein,
participants had either normal or corrected-to-normal
visual acuity and were native English speakers.

Materials. Two sets of words referring to concrete objects
were generated from McRae et al.’s (2005) norms, 64 low
and 64 high NoF concepts (see Appendix A). High NoF con-
cepts contained a significantly greater number of features
than did low NoF concepts, t(126) = 29.67, p < .001. NoF
can be calculated by either including or excluding taxo-
nomic features (e.g., <is an animal>, <is a vegetable>),
which seem qualitatively different than the vast majority
of other features, such as parts, colors, functions, character-
istic behaviors, and so on. Therefore, we excluded taxo-
nomic features from the counts in the present analyses.
Note that in Pexman et al.’s (2002, 2003) studies, NoF
was calculated including taxonomic features, but it was la-
ter found that NoF without taxonomic features had a stron-
ger relationship to decision latencies and decision errors in
a concreteness decision task (Pexman & Hope, in
preparation).

The two sets of items were matched extremely closely
on variables known to influence lexical and concreteness
decisions (see Table 1). These included word frequency,
which was computed using the natural logarithm of the
singular plus plural counts taken from the British National
Corpus (BNC) online search engine (Burnard, 2000).
Table 1
Characteristics of stimuli used in Studies 1A and 1B

Variable Low NoF High NoF

M SE M SE

Number of features (NoF) 9.0 0.2 15.7 0.3
ln(BNC) frequency 6.4 0.2 6.4 0.2
Familiarity 5.7 0.2 5.7 0.2
Number of letters 5.4 0.2 5.4 0.2
Number of phonemes 4.4 0.2 4.5 0.2
Number of syllables 1.6 0.1 1.7 0.1
Orthographic neighborhood size (N) 4.6 0.8 4.4 0.7
Semantic density 157 20 155 11
Number of creatures 18 21
Number of fruits/vegetables 11 8
Number of living things 35 35
Number of musical instruments 0 0

Note. ln = the natural logarithm (loge); BNC = British National Corpus.
Although Pexman and colleagues computed their frequen-
cies using the Kučera and Francis (1967) corpus, we chose
the BNC because it is based on a larger corpus (89.7 versus
1 million words) and is more recent (2000 versus 1967).
Concept familiarity was measured by asking 20 partici-
pants to rate ‘‘How familiar are you with the thing that the
word refers to?” on a 9-point scale, with 1 corresponding
to not at all familiar, and 9 corresponding to highly familiar.
Number of letters, number of phonemes, number of sylla-
bles, and orthographic neighborhood size (Coltheart, Dav-
elaar, Jonasson, & Besner, 1977) were computed using
the N-Watch program (Davis, 2005).

The concepts were also equated on semantic density as
calculated from McRae et al.’s (2005) norms. In the norms,
each feature is a vector of production frequencies (the
number of participants listing that feature for each specific
concept) across the 541 concepts. Proportion of shared var-
iance for each pair of features was calculated by squaring
the correlation between the vectors for the two features.
Only features occurring in three or more concepts were in-
cluded to attempt to avoid spurious correlations. A con-
cept’s semantic density was calculated as the sum of the
proportion of shared variances for each pair of features
that are included in that concept. Thus, semantic density
provides a measure of the degree to which a concept’s fea-
tures are intercorrelated. Finally, because there is evidence
that different categories of concrete objects are processed
differentially (Laws & Gale, 2002), we also matched the
two groups according to the following category break-
down: creatures, fruits and vegetables, nonliving things,
and musical instruments.

Filler items consisted of 128 pronounceable nonwords
whose spelling and sound did not correspond to an English
word (lerve). The nonwords and low and high NoF concept
names were matched on mean number of letters so that
length did not cue the response.

Procedure. Participants were tested individually using Psy-
Scope (Cohen, MacWhinney, Flatt, & Provost, 1993) on a
Macintosh computer equipped with a 16-in. monitor and
a CMU button box (which provides decision latencies with
accuracy to the nearest ms). Letters were approximately
0.5 cm high, black, and presented on a white background.
One item was presented at a time and participants were
asked to decide whether the presented item referred to
an English word or not. They used the index finger of their
dominant hand for a ‘yes’ response and the index finger of
their non-dominant hand for a ‘no’ response. Decision
latencies were measured from stimulus onset to the onset
of the button press. Participants were instructed to re-
spond as quickly and accurately as possible.

Participants first completed 30 practice trials with
verbal feedback concerning incorrect decisions. Items
presented during the practice trials did not appear in
the test trials. On each trial, the item was presented until
the participant made a decision. The intertrial interval
was 1500 ms. Test trials were identical to the practice
trials except that no feedback was provided and there
was a break after every 50 items. Items were presented
in random order. The experiment took approximately
25 min.
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Results and discussion
Subject (t1) and item (t2) analyses were performed on

decision latencies and the square root of the number of
errors (Myers, 1979). Errors were removed from decision
latency analyses (4.6% of trials). Correct decisions exceed-
ing three standard deviations above the grand mean for
the target words were replaced with the cutoff value
(1.8% of trials). NoF (high versus low) was within-subjects
(paired t-test) and between-items (independent t-test). All
p-values assume a two-tailed distribution. Mean decision
latencies and error rates are presented in Table 2.

Lexical decision latencies to high NoF concepts were
30 ms shorter than to low NoF concepts, t1(16) = 7.37,
p < .00001, t2(126) = 2.34, p < .05, minF’(1,141) = 4.97,
p < .05. Participants made 3.7% fewer errors on high NoF
concepts, t1(16) = 5.99, p < .0001, t2(126) = 2.03, p < .05,
minF’(1,142) = 3.69, p < .06. For nonwords, the mean deci-
sion latency was 756 ms, and the mean error rate was 3.7%.
In summary, using this improved set of items, we repli-
cated Pexman et al.’s (2002) NoF effect in the lexical deci-
sion task.

Study 1B

Methods
Participants. Seventeen undergraduate students at the Uni-
versity of Western Ontario received partial course credit
for their participation.

Materials. Target items were identical to those in Study 1A.
Filler items were 128 abstract concepts matched with the
target items on mean number of letters. Although some
abstract filler items were noun/verb ambiguous (respect),
they were chosen to have a salient noun meaning.

Procedure. The procedure was identical to that in Study 1A
except that for each presented word, participants were
asked to respond ‘yes’ if the thing to which the word re-
ferred was touchable (robin) and ‘no’ otherwise (justice).

Results and discussion
The analyses were identical to those in Study 1A. Errors

were removed from the decision latency analyses (3.9% of
Table 2
Decision latencies (ms) and error rates (%) for Studies 1A (lexical decision)
and 1B (concreteness decision)

Study 1A Study 1B

M SE M SE

Latencies
Low NoF 623 19 666 16
High NoF 593 20 637 14
Difference 30** 29**

Error rates
Low NoF 6.5 0.8 5.6 0.9
High NoF 2.8 0.5 2.1 0.6
Difference 3.7** 3.5*

Note. NoF = number of features.
* Significant by subjects.

** Significant by subjects and items.
trials). Correct decisions that exceeded three standard
deviations above the concrete concept grand mean were
replaced with the cutoff value (1.4% of trials). Mean deci-
sion latencies and error rates are presented in Table 2.

Concreteness decision latencies to high NoF concepts
were 29 ms shorter than to low NoF concepts,
t1(16) = 4.27, p < .0001, t2(126) = 2.51, p < .05, min-
F’(1,118) = 4.68, p < .05. Participants also made 3.5% fewer
errors on high NoF concepts, which was significant by sub-
jects and marginal by items, t1(16) = 5.84, p < .0001,
t2(126) = 1.80, p < .08, minF’(1,141) = 2.95, p < .09. The
mean decision latency for abstract concepts was 706 ms,
and the mean error rate was 4.7%. Thus, Study 1B repli-
cated the NoF effect using a concreteness decision task
with an extremely tightly controlled and large set of items.

In conjunction with Pexman et al.’s (2002, 2003) results,
the present results provide strong evidence supporting the
claim that decisions in speeded tasks are faster for con-
cepts with a greater number of semantic features. In Stud-
ies 2 and 3, we examined the NoF effect more closely.
Given previous results, described more fully below, it is
quite possible that the NoF effect is mediated by feature
type. Specifically, the possibility exists that features that
are shared by many concepts (<made of metal>) versus
those which are highly distinctive to a concept (<moos>)
may be differentially responsible for NoF effects.

Shared versus distinctive features
In their investigation of the factors underlying trends in

the performance of category-specific deficit patients, Cree
and McRae (2003) included a measure of feature distinc-
tiveness (see also Garrard et al., 2001). At one end of the
distinctiveness dimension lie highly shared features such
as <has four legs> and <is hard> that occur in many con-
cepts. On the other end lie distinctive features such as
<moos> and <oinks> that occur in few concepts (or even
just one). Shared features denote commonalities among
concepts, and thus indicate similarities among concepts.
In contrast, distinctive features denote differences, and
thus help people to discriminate among concepts. Cree
and McRae defined a feature as shared if it was listed for
more than 2 of the 541 concepts, and distinctive if it was
listed for only 1 or 2 concepts. They also computed feature
distinctiveness as a continuous dimension (1/number of
concepts in which a feature occurred), but for explanatory
purposes, we focus on the shared versus distinctive binary
measure.

Cree and McRae (2003) showed that this measure of
distinctiveness was a key part of understanding behavioral
trends across category-specific deficit patients. These defi-
cits are typically observed in tasks such as picture naming,
word-to-picture matching, defining, and naming from def-
inition, all of which require distinguishing a concept from
among similar concepts. For example, a patient can only
identify something as a zebra rather than a horse in a pic-
ture naming task if their knowledge about what distin-
guishes zebras from horses (e.g., black and white stripes)
is preserved. Cree and McRae computed the proportion of
distinctive features for a large number of concepts. Assum-
ing that damage to features (distinctive versus shared) is
equiprobable, the implication is that concepts with lower
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proportions of distinctive features should be impaired to a
greater extent than those with higher proportions in these
types of tasks. Indeed, the degree to which concepts’ fea-
tures are distinctive accounted for the degree of impair-
ment across multiple categories.

Analogous results have been found with normal adults.
Humphreys et al. (1988) found that participants were fas-
ter to name pictures of objects belonging to categories
whose exemplars are structurally dissimilar (clothing and
furniture) versus structurally similar (insects, fruits, and
vegetables). In feature verification tasks, Cree et al.
(2006) found that participants were faster to verify a con-
cept-feature pair when the feature was distinctive than
when it was shared. They simulated these results using
an attractor network and found that distinctive features
had stronger connections to and from other features of
the same concept than did shared features, which provides
a plausible basis for the human results.

There is also, however, research showing what superfi-
cially appears to be the opposite pattern, an advantage for
items that share many features with other items. For
example, typical exemplars, such as robin for the category
bird, which possess a greater number of shared features
than do atypical exemplars such as ostrich, are responded
to more rapidly in a category verification task (Smith, Sho-
ben, & Rips, 1974). Similarly, in contrast to their findings
using picture naming, Riddoch and Humphreys (1987)
found that participants were faster to make broad-level
classifications (living versus nonliving) for pictures of ob-
jects belonging to categories whose exemplars are struc-
turally similar.

In resolving this apparent contradiction, what is
important to note is that broad semantic classification
tasks do not require people to make distinctions among
category exemplars, and it is only in tasks in which par-
ticipants are not required to make such distinctions that
concepts with large numbers of shared features show a
processing advantage. In essence then, the processing
advantages for distinctive versus shared feature types
are task dependent. Distinctive features make it easier
to respond when the task requires distinguishing an
item from among similar items, such as when naming
the picture of an object. Shared features, particularly
those consistent with the decision required, make it eas-
ier to respond when a more broad-based judgment is
called for, such as deciding whether a robin is a living
thing.

Concreteness decision would appear to be a task that
calls for a more broad-based judgment. Thus, one might
expect that shared features would be more important than
distinctive features in that task. Whether the same is true
in lexical decision depends, first of all, on the extent to
which semantic information is used. If semantic informa-
tion does play a significant role in lexical decision, then
the type of semantic information that is activated may
matter. In particular, if the sets of activated features are
consistent with a large number of concepts, that fact may
provide good evidence that the letter string corresponds
to a real word. As a result, shared features may contribute
more than distinctive features to the NoF effect in the lex-
ical decision task as well.
In our Study 1 stimuli, low NoF concepts averaged 9.0
features, whereas high NoF concepts averaged 15.7 fea-
tures. Breaking these totals down, low NoF concepts aver-
aged 2.1 distinctive and 6.9 shared features, whereas high
NoF concepts averaged 5.9 distinctive and 9.8 shared fea-
tures. In Pexman et al.’s (2002) studies, low NoF concepts
averaged 11.0 features, whereas high NoF concepts aver-
aged 18.1 features. Low NoF concepts averaged 3.5 distinc-
tive and 7.5 shared features, whereas high NoF concepts
averaged 5.9 distinctive and 12.2 shared features. Because
the high and low NoF concepts differed in terms of both
distinctive and shared features in both cases, Study 1 and
Pexman et al.’s experiments do not provide insight into
their relative contributions.

One way to investigate the relative contributions of
shared versus distinctive features is to directly contrast
the number of each type of feature while holding NoF con-
stant. Another way is to create high and low NoF condi-
tions by independently manipulating the number of
shared or the number of distinctive features while holding
the other type constant. Study 2 used the former manipu-
lation whereas Study 3 used the latter.

Study 2

The purpose of Study 2 was to investigate whether lex-
ical and concreteness decisions are systematically influ-
enced when the number of shared versus distinctive
features is varied while holding NoF constant.

Study 2A

Methods
Participants. Twenty-five undergraduate students at the
University of Western Ontario received $10 for their
participation.

Materials. Two sets of target words referring to concrete
objects were generated from McRae et al.’s (2005) norms.
One set consisted of 55 low number of shared features con-
cepts and the other consisted of 55 high number of shared
features concepts (see Appendix B). High shared-feature
concepts had a significantly greater number of shared fea-
tures, t(108) = 12.07, p < .001. The two sets were matched
on the same variables described in Study 1, plus NoF (see
Table 3). Filler items consisted of 110 nonwords, which
were a subset of those used in Study 1A and were matched
with the target items on number of letters.
Procedure. A lexical decision task identical to that in Study
1A was used.

Results and discussion
Subject (t1) and item (t2) analyses were performed on

decision latencies and error rates. The independent vari-
able was number of shared features, which was within-
subjects but between-items. Errors were removed from
the decision latency analyses (3.6% of trials). Correct deci-
sions exceeding three standard deviations above the grand
mean of the target words were replaced with the cutoff



Table 3
Characteristics of stimuli used in Studies 2A and 2B

Variable Number of shared features

Low High

M SE M SE

Number of shared features 6.7 0.2 10.7 0.2
Number of distinctive features 6.0 0.3 1.7 0.1
Number of features (NoF) 12.7 0.4 12.4 0.3
ln(BNC) frequency 6.6 0.2 6.5 0.2
Familiarity 6.0 0.3 6.0 0.3
Number of letters 5.4 0.2 5.4 0.2
Number of phonemes 4.5 0.2 4.6 0.2
Number of syllables 1.6 0.1 1.7 0.1
Orthographic neighborhood size (N) 4.4 0.7 4.3 0.8
Semantic density 170 19 172 13
Number of creatures 12 15
Number of fruits/vegetables 5 6
Number of living things 37 32
Number of musical instruments 1 2

Note. ln = the natural logarithm (loge); BNC = British National Corpus.
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value (1.6% of trials). Mean decision latencies and error
rates are presented in Table 4.

Lexical decision latencies for concepts with a high num-
ber of shared features were 11 ms shorter than for those
with a low number of shared features, which was signifi-
cant by subjects, t1(24) = 4.60, p < .001, but not by items,
t2(108) = 1.07, p > .2, minF’(1,118) = 1.09, p > .2. The 0.7%
difference in error rates was nonsignificant, t1(24) = 1.32,
p > .1, t2(108) = 0.30, p > .7, minF’(1,118) = 0.09, p > .7.
The mean decision latency for nonwords was 633 ms,
and the mean error rate was 2.7%.

In summary, although the effect in the lexical decision
task was not large, there is evidence that concepts with
numerous shared features are easier to respond to than
those with fewer shared features. This effect may be signif-
icant only in the subject analyses for two reasons. First, the
feature type manipulation was a within-subject but be-
tween-item manipulation. Within manipulations are inev-
itably more powerful than between manipulations.
Second, as alluded to earlier, the lexical decision task is
not based solely on semantic knowledge. Instead, lexical
decisions are made on the basis of some combination of
orthographic, phonological, and semantic knowledge, and
Table 4
Decision latencies (ms) and error rates (%) for Studies 2A (lexical decision)
and 2B (concreteness decision)

Study 2A Study 2B

M SE M SE

Latencies
Low shared 555 13 756 31
High shared 544 12 714 29
Difference 11* 42**

Error rates
Low shared 3.9 0.6 4.5 0.8
High shared 3.2 0.5 3.0 0.6
Difference 0.7 1.5

* Significant by subjects.
** Significant by subjects and items.
the influence of these types of information can be modu-
lated by task parameters (such as the type of nonword foils
used). Unless semantic knowledge plays a major role, one
would not expect the impact of a semantic factor like dis-
tinctiveness to be particularly strong. On the other hand, a
semantic decision task such as the concreteness decision
task used in Study 1B unambiguously depends on the com-
putation of word meaning, which should make any NoF
effect easier to detect. Therefore, Study 2B used the same
stimuli as Study 2A in a concreteness decision task.

Study 2B

Methods
Participants. Twenty-four undergraduate students at the
University of Western Ontario received $10 for their
participation.

Materials. The test items were identical to those used in
Study 2A. Filler items consisted of 110 abstract concepts.
The fillers were a subset of those used in Study 1B and
were matched with the target items on number of letters.

Procedure. A concreteness decision task identical to that in
Study 1B was used.

Results and discussion
The analyses were identical to those in Study 2A. Errors

were removed from the decision latency analyses (3.8% of
trials). Correct decisions that exceeded three standard
deviations above the concrete word grand mean were
replaced with the cutoff value (1.6% of trials). Mean deci-
sion latencies and error rates are presented in Table 4.

Concreteness decision latencies for concepts with a high
number of shared features were 42 ms shorter than for
those with a low number of shared features, t1(23) = 6.17,
p < .00001, t2(108) = 2.18, p < .05, minF’(1,127) = 4.22,
p < .05. The 1.5% difference in error rates was nonsignifi-
cant, t1(23) = 1.10, p > .2, t2(108) = 1.16, p > .2, min-
F’(1,127) = 0.63, p > .6. The mean decision latency for
abstract concepts was 791 ms, and the mean error rate
was 4.8%. Thus, increasing the number of shared features
leads to faster concreteness decisions, with the size of
the effect being greater than in Study 2A with lexical
decision.

Obtaining a larger effect in semantic decision is not par-
ticularly surprising. Although there was no difference in ef-
fect size between Study 1A with lexical decision (30 ms)
and Study 1B with concreteness decision (29 ms), a num-
ber of studies have found stronger effects of semantic
manipulations in semantic rather than lexical decision
tasks (Becker, Moscovitch, Behrmann, & Joordens, 1997;
Bueno & Frenck-Mestre, 2008). It is clear that participants
must retrieve semantic information in order to decide
whether a word refers to something that is concrete or
abstract. In contrast, computation of word meaning is,
undoubtedly, less strongly related to making a word versus
nonword decision (Pexman et al., 2002) because ortho-
graphic and phonological information undoubtedly also
play a role. Thus, one would expect semantic effects to
be smaller in lexical than concreteness decision tasks.
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One question that Study 2 does not allow us to answer
is, assuming that the impact of additional shared features
is a processing benefit, what is the impact of additional dis-
tinctive features? If the issue is merely semantic richness,
one would expect that adding features, regardless of type,
would speed processing because, in all cases, the result is a
richer semantic representation. However, it is possible that
adding distinctive features inhibits certain decisions
because as distinctive features are added to a concept, that
concept becomes increasingly less similar to other con-
cepts. For example, such might be the case in a task such
as semantic verification in which latencies are longest for
concepts that are dissimilar to other category members
(Rips, Shoben, & Smith, 1973). In fact, although we have
discussed the manipulation in Study 2 as being a manipu-
lation of shared features, if we reverse the logic and think
about these data in terms of distinctive features, one could
argue that distinctive features inhibit decisions. That is, be-
cause each feature was classified as either shared or dis-
tinctive, the numbers of shared and distinctive features
are the complements of one another in Study 2. Re-labeling
the low-shared condition as high-distinctive and the high-
shared condition as low-distinctive suggests that decision
latencies are longer to concepts with many versus few dis-
tinctive features. Although this interpretation is possible, it
is unlikely given that in Study 1 there were, on average, a
greater number of additional distinctive features (3.9) than
additional shared features (2.9) in the high NoF condition
and an NoF effect was obtained. Study 3 was designed to
overcome this ambiguity of interpretation.

Study 3

The purpose of Study 3 was to investigate whether lex-
ical and concreteness decisions are systematically influ-
enced when the number of shared features and the
number of distinctive features are manipulated while
keeping the other constant. Therefore, shared and distinc-
tive features were independently manipulated creating
two separate manipulations of NoF, one based solely on
Table 5
Characteristics of stimuli used in Studies 3A and 3B

Variable Shared features manipula

Low NoF Hi

M SE M

Number of shared features 3.1 0.2 9.1
Number of distinctive features 6.5 0.6 6.1
Number of features (NoF) 9.5 0.6 15.2
ln(BNC) frequency 7.0 0.4 6.9
Familiarity 6.3 0.5 6.2
Number of letters 5.8 0.5 5.7
Number of phonemes 4.7 0.4 4.9
Number of syllables 1.9 0.2 1.6
Orthographic neighborhood size (N) 4.3 1.3 3.1
Semantic density 12 6 165
Number of creatures 0 4
Number of fruits/vegetables 4 2
Number of living things 15 14
Number of musical instruments 1 0

Note. ln = the natural logarithm (loge); BNC = British National Corpus.
adding shared features, and the other based solely on add-
ing distinctive features.

Study 3A

Methods
Participants. Forty-nine undergraduate students at the
University of Western Ontario received partial course cred-
it for their participation. Four participants were excluded
for making more than 15% incorrect decisions across all
items, leaving 45 participants.

Materials. Four sets of 20 concepts were generated from
McRae et al.’s (2005) norms (see Table 5). In the first two
sets, the number of shared features was manipulated while
holding constant the number-of-distinctive-features. In
the other two sets, the number-of-distinctive-features
was manipulated while holding constant the number of
shared features. High NoF, shared-manipulated concepts
had a significantly greater number of shared features when
compared to low NoF, shared-manipulated concepts,
t(38) = 18.45, p < .001. High NoF, distinctive-manipulated
concepts had a significantly greater number of distinctive
features when compared to low NoF, distinctive-manipu-
lated concepts, t(38) = 16.83, p < .001. The four sets were
matched on the same variables described in Study 1. How-
ever, note that because semantic density, which measures
the degree to which a concept’s features are intercorrelat-
ed, is calculated using only shared features, it was lower
for the low NoF, shared-manipulated condition that con-
tains only 3.1 shared features on average. Filler items con-
sisted of 80 nonwords taken from those used in Study 1
and were matched with the target items on number of
letters.

Note that the two sets of conditions mirror one another.
In the shared features manipulated conditions, there were
6.5 and 6.1 distinctive features on average, with the num-
ber of shared features being low (3.1 in the low NoF items)
or high (9.1 in the high NoF items). In the distinctive fea-
tures manipulated conditions, there were 6.5 and 6.3
ted Distinctive features manipulated

gh NoF Low NoF High NoF

SE M SE M SE

0.2 6.5 0.3 6.3 0.4
0.5 2.9 0.2 9.1 0.3
0.6 9.4 0.3 15.4 0.3
0.3 6.8 0.3 6.6 0.4
0.4 6.2 0.4 6.4 0.4
0.3 5.8 0.3 5.9 0.4
0.2 4.5 0.3 5.0 0.3
0.1 1.6 0.1 1.9 0.1
0.8 4.1 1.1 3.2 0.9

29 114 30 83 17
4 1
3 1

13 18
0 0
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shared features on average, with the number of distinctive
features being low (2.9 in the low NoF items) or high (9.1
in the high NoF items).

Procedure. A lexical decision task identical to those in
Studies 1A and 2A was used.

Results and discussion
Subject (F1) and item (F2) analyses of variance were con-

ducted on decision latencies and error rates. The indepen-
dent variables were type of manipulated feature (shared
versus distinctive) and NoF (high versus low), both of
which were within-subjects, but between-item variables.
Planned contrasts were used to test for differences among
all pairs of conditions. Errors were removed from the deci-
sion latency analyses (3.3% of trials). Correct decisions that
exceeded three standard deviations above the grand mean
of the target words were replaced with the cutoff value
(1.7%). Mean decision latencies and percent errors are pre-
sented in Table 6.

Decision latencies. Manipulated feature type interacted
with NoF by subjects, F1(1,44) = 7.59, p < .01, F2(1,76) =
1.27, p > .2, minF’(1,99) = 1.08, p > .2. For the planned com-
parisons, the halfwidth of the confidence interval of the
difference between means was 9 ms. If the halfwidth is less
than the observed difference between means, then the
contrast would be significant by a conventional inferential
test. Confidence intervals were computed using the meth-
ods recommended by Masson and Loftus (2003), using
pooled error terms because the error terms were similar
in magnitude. Decision latencies in the low NoF, shared-
manipulated condition were a significant 25 ms longer
than in the high NoF, shared-manipulated condition. How-
ever, there was no difference when the number of distinc-
tive features were manipulated (i.e., when the number of
shared features was held constant). In fact, decision laten-
cies in the low NoF, shared-manipulated condition, which
had only 3.1 shared features on average, were significantly
longer than in the other three conditions. There were no
significant differences among those other three conditions,
which differed by a maximum of 4 ms.

Collapsed across manipulated feature type, decision
latencies were 10 ms shorter for high (M = 598 ms,
SE = 9 ms) than for low NoF concepts (M = 608 ms,
Table 6
Decision latencies (ms) and error rates (%) for Studies 3A and 3B

Dependant variable Shared features
manipulated

Distinctive features
manipulated

Low NoF High NoF Low NoF High NoF

M SE M SE M SE M SE

Study 3A (lexical decision)
Latencies 621 13 596 14 596 12 600 12
Error rates 4.8 0.9 2.4 0.5 2.8 0.6 3.2 0.5

Study 3B (concreteness decision)
Latencies 792 19 711 18 736 19 714 19
Error rates 7.5 1.2 3.0 0.6 4.4 1.1 3.9 0.9

Note. NoF = number of features.
SE = 9 ms), which was significant by subjects,
F1(1,44) = 5.65, p < .05, but not by items, F2 < 1, minF’ < 1.
Collapsed across NoF, decision latencies were 10 ms short-
er for concepts with distinctive features manipulated
(M = 598 ms, SE = 8 ms) than for those with shared features
manipulated (M = 608 ms, SE = 9 ms), which was signifi-
cant by subjects, F1(1,44) = 6.37, p < .05, but not by items,
F2 < 1, minF’ < 1. Again, this effect was carried by the con-
dition containing only 3.1 shared features.

Error rates. The interaction between manipulated feature
type and NoF was not significant, F1(1,44) = 2.26, p > .1,
F2 < 1, minF’ < 1. Collapsed across feature type, there was
no significant difference in error rates between high
(M = 2.8%, SE = 0.4%) and low NoF concepts (M = 3.8%,
SE = 0.6%), F1 < 1, F2 < 1, minF’ < 1. Collapsed across NoF,
there was no significant difference in error rates for dis-
tinctive (M = 2.8%, SE = 0.4%) versus shared features manip-
ulated conditions (M = 3.6%, SE = 0.5%), F1(1,44) = 1.03,
p > .3, F2 < 1, minF’ < 1. The mean decision latency for non-
words was 756 ms, and the mean error rate was 6.4%. We
defer discussion of these results until the discussion of
Study 3B.

Study 3B

Methods
Participants. Forty-seven undergraduate students at the
University of Western Ontario received partial course cred-
it for their participation. One participant was excluded for
talking during the study, and two were excluded for mak-
ing greater than 15% errors, leaving 44 participants.

Materials. The test items were identical to those in Study
3A. Filler items were 80 abstract concepts that were a sub-
set of those used in Study 1B and were matched with the
target items on number of letters.

Procedure. A concreteness decision task identical to those
in Studies 1B and 2B was used.

Results and discussion
The design and analyses were identical to Study 3A.

Errors were removed from the decision latency analyses
(4.7% of trials). Decision latencies that exceeded three stan-
dard deviations above the concrete word grand mean were
replaced with the cutoff value (1.7%). Mean decision laten-
cies and percent errors are presented in Table 6.

Decision latencies. The interaction between manipulated
feature type and NoF was significant by subjects,
F1(1,43) = 15.98, p < .001, F2(1,76) = 2.54, p > .1, min-
F’(1,98) = 2.19, p > .1. The halfwidth of the confidence
interval of the difference between means was 13 ms. Deci-
sion latencies in the low NoF, shared-manipulated condi-
tion were a significant 81 ms longer than in the high NoF,
shared-manipulated condition. In fact, decision latencies
in the low NoF, shared-manipulated condition (with only
3.1 shared features on average) were longer than in each
of the other two conditions as well. When the number of
shared features was held constant, and distinctive features
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were manipulated, there was a significant 22 ms differ-
ence. The low NoF, distinctive-manipulated condition
was also a significant 25 ms longer than the high NoF,
shared-manipulated condition. Finally, there was only a
3 ms difference between the two high NoF conditions.

Collapsed across feature type, decision latencies were
51 ms shorter for high (M = 713 ms, SE = 13 ms) than for
low NoF concepts (M = 764 ms, SE = 14 ms), F1(1,43) =
53.59, p < .00001, F2(1,76) = 7.67, p < .01, minF’(1,96) =
6.71, p < .05. Collapsed across NoF, decision latencies were
27 ms shorter for concepts with distinctive features
manipulated (M = 725 ms, SE = 13 ms) than for those with
shared features manipulated (M = 752 ms, SE = 14 ms),
which was significant by subjects, F1(1,43) = 26.16,
p < .00001, but not by items, F2(1,76) = 2.12, p > .1,
minF’(1,88) = 1.96, p > .1.

Error rates. The interaction between manipulated feature
type and NoF was significant by subjects, F1(1,43) = 6.43,
p < .05, F2(1,76) = 2.17, p > .1, minF’(1,113) = 1.62, p > .2.
Collapsed across feature type, participants made 2.6% few-
er errors to high (M = 3.4%, SE = 0.8%) than to low NoF con-
cepts (M = 6.0%, SE = 0.5%), F1(1,43) = 17.95, p < .0001,
F2(1,76) = 4.98, p < .05, minF’(1,109) = 3.90, p < .06. Col-
lapsed across NoF, there was not a significant difference
when distinctive (M = 4.1%, SE = 0.7%) versus shared fea-
tures were manipulated (M = 5.2%, SE = 0.7%), F1(1,43) =
2.92, p > .09, F2 < 1, minF’ < 1. The mean decision latency
for abstract words was 798 ms, and the mean error rate
was 4.4%.

Study 3 shows that shared features play a major role,
whereas distinctive features play a facilitatory but lesser
role, particularly when the effects of NoF, shared features,
and distinctive features are contrasted. The main effect of
NoF was 10 ms in lexical decision and 51 ms in concrete-
ness decision. The influence of distinctive features when
shared features were equated was basically nil in lexical
decision, but 22 ms in concreteness decision. The largest
effects were found for shared features when the number
of distinctive features was held constant, 25 ms in lexical
decision and 81 ms in concreteness decision.

In both Study 3A and 3B, when NoF is low (9.5 features)
and there are very few shared features (3.1), decision
latency is consistently the longest. When NoF is high,
decision latency is consistently the shortest. Note that
the difference in the number of shared features for the
two high NoF groups in Study 3 was smaller than in Study
2, and the results differed between experiments. In Study
2, the low-shared and high-shared groups contained 12.7
and 12.4 features, respectively, and the difference in num-
ber of shared features was 4.0 (6.7 versus 10.7, so that the
high-shared items contained only 1.7 distinctive features
on average). In Study 2, there was an effect of this
difference in number of shared features, particularly in
concreteness decision. In contrast, in Study 3, the high
NoF, shared-manipulated and high NoF, distinctive-manip-
ulated item sets contained 15.2 and 15.4 features, differing
in number of shared features by only 2.8 (9.1 versus 6.3).
No difference was obtained in either task in Study 3.

The other condition in Study 3 included the low NoF, dis-
tinctive-manipulated concepts. These items averaged 6.5
shared and only 2.9 distinctive features. In the concreteness
decision latencies, this group patterned the way one would
imagine. That is, it fell between the low NoF, shared-manip-
ulated condition on the one hand (which contained 3.4 few-
er shared features), and the two high NoF conditions on the
other hand, which contained at least as many shared fea-
tures, and a greater number of distinctive features. In other
words, these results illustrate the influence of shared fea-
tures and suggest that there is a positive impact of distinc-
tive features as well. The one perplexing data point in
Study 3 is the mean lexical decision latency for the low
NoF, distinctive-manipulated condition. In this case, it was
virtually identical to the two high NoF groups of items,
showing a lack of influence of overall NoF. Note however
that lexical decision latency for this group was shorter than
for the low NoF, shared-manipulated items, thus showing an
influence of the number of shared features.

Overall regressions. The above analyses support our conclu-
sion regarding the importance of shared features to the
NoF effect while suggesting that distinctive features also
play a positive role. To provide a further examination of
the relative influences of shared and distinctive NoF in
the present experiments, we conducted stepwise regres-
sion analyses to compare their ability to predict decision
latencies when the items from Studies 1–3 were combined.
For the items that appeared in multiple experiments, we
calculated the mean latency across experiments. We forced
in ln(BNC) word frequency and word length in letters on
the first step to account for basic word-reading non-
semantic variables. For concreteness decision, shared NoF
significantly predicted decision latency, partial r = �.26,
t(246) = �4.20, p < .001, but distinctive NoF did not, partial
r = �.02, t(246) = �0.27, p > .7. After shared NoF entered
the equation, the contribution of distinctive NoF again
did not quite reach significance, partial r = �.11,
t(245) = �1.73, p > .08. For lexical decision, shared NoF
again significantly predicted decision latency, partial
r = �.25, t(246) = �4.04, p < .001, but distinctive NoF did
not, partial r = �.11, t(246) = �1.80, p > .07. After shared
NoF entered the equation, however, both shared and dis-
tinctive NoF were significant predictors: shared NoF, par-
tial r = �.31, t(245) = �5.00, p < .001; distinctive NoF,
partial r = �.21, t(245) = �3.40, p < .01. These regression
analyses confirm the results of the three studies. Both the
number of shared features and, to a lesser extent, the num-
ber of distinctive features influence decision latencies.

Study 3 and the regression analyses also help to clarify
the interpretation of Study 2. We stated above that the re-
sults of Study 2 were most likely due to a facilitative influ-
ence of shared features, but it was possible that they were
due to an inhibitory influence of distinctive features. These
regressions support the former conclusion, but not the lat-
ter. That is, they show that the greater the number of
shared features, the shorter the decision latency in both
tasks. Although the influence of distinctive NoF was small,
that influence was facilitatory rather than inhibitory (i.e.,
the partial correlation with decision latency was negative
rather than positive). Therefore, it can be concluded that
the results of Study 2 were due to the strong positive effect
of shared features.



Table 7
Mean number per concept of shared plus distinctive features of each
knowledge type

Knowledge
type

Study 1 Study 2 Study 3

Low
NoF

High
NoF

Low
shared

High
shared

Shared
manipulated

Distinctive
manipulated

Low
NoF

High
NoF

Low
NoF

High
NoF

Visual form
and surface

3.02 5.55 4.35 4.96 2.85 5.05 2.80 5.60

Encyclopedic 2.05 3.58 3.20 2.35 2.45 3.15 1.90 4.60
Tactile 0.44 0.58 0.42 0.56 0.15 0.55 0.90 0.40
Taste 0.11 0.16 0.11 0.13 0.05 0.05 0.05 0.05
Sound 0.08 0.34 0.20 0.20 0.15 0.35 0.00 0.05
Smell 0.03 0.09 0.07 0.00 0.10 0.00 0.15 0.20
Color 0.58 1.06 0.60 0.95 0.65 1.00 0.70 0.70
Visual motion 0.47 0.84 0.42 0.58 0.10 0.95 0.35 0.25
Function 2.25 3.52 3.29 2.64 3.00 4.05 2.55 3.55
Overall NoF 9.03 15.72 12.66 12.37 9.50 15.15 9.40 15.40

Table 8
Mean number per concept of shared features of each knowledge type

Knowledge Study 1 Study 2 Study 3

Low
NoF

High
NoF

Low
shared

High
shared

Shared
manipulated

Distinctive
manipulated

Low
NoF

High
NoF

Low
NoF

High
NoF

Visual form
and surface

2.70 4.14 2.76 4.60 1.50 4.00 2.50 3.15

Encyclopedic 1.27 1.70 1.07 1.78 0.45 1.20 1.00 1.00
Tactile 0.41 0.48 0.35 0.55 0.05 0.30 0.85 0.25
Taste 0.09 0.11 0.11 0.11 0.00 0.10 0.05 0.00
Sound 0.08 0.14 0.11 0.15 0.05 0.00 0.00 0.00
Smell 0.00 0.05 0.02 0.00 0.00 0.00 0.10 0.05
Color 0.58 1.02 0.56 0.93 0.55 1.00 0.70 0.70
Visual motion 0.36 0.52 0.25 0.51 0.00 0.70 0.20 0.15
Function 1.44 1.64 1.42 2.02 0.45 1.85 1.10 0.95
Shared NoF 6.93 9.80 6.65 10.65 3.05 9.15 6.50 6.25
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One final aspect of Study 3 should be noted. To a large
extent, semantic density of a concept depends on the num-
ber of shared features because feature correlations are cal-
culated using shared features only. These measures can be
decoupled in some circumstances (as they were in Study 2)
because shared features do differ in the degree to which
they are correlated with other features. However, because
Study 3 included a condition, the low NoF shared-manipu-
lated condition, that contained an extremely low number
of shared features (3.1 on average), it was not possible to
match it to the high NoF shared-manipulated condition
on semantic density. Therefore, it might be possible that
semantic density played a role in Study 3. That is, it could
be the case that shared features that are highly correlated
with other shared features are particularly important (i.e.,
not all shared features are created equal). This possibility
does not change our basic conclusions regarding the
importance of shared features, however, because semantic
density was equated in Study 2 and an influence of shared
features was obtained.

Study 4

In previous articles concerning NoF effects, there has
been no discussion regarding the manner in which the
types of featural knowledge may be differentially key to
understanding these effects. Knowledge type (or feature
type) analyses have been applied to other phenomena,
notably category-specific semantic deficits. For example,
Cree and McRae (2003) classified all of the features in
McRae et al.’s (2005) norms in terms of what they called
a brain-region taxonomy. They used research in neurosci-
ence and cognitive neuropsychology to develop a taxon-
omy of types of knowledge that are at least somewhat
separable in the brain. The taxonomy includes nine knowl-
edge types: visual form and surface features (e.g., <has
legs>, <made of metal>), tactile features (<is smooth>),
functional features (<used by turning>), color (<is red>), vi-
sual motion features (<swims>), taste (<is sweet>), sound
(<moos>), smell (<smells bad>), and encyclopedic features
(<lives in Africa>).

In the present analyses, we investigated the knowledge
types that exist in the concepts used in Studies 1–3 in
terms of the number of shared and distinctive features
within each class. Note that taxonomic features such as
<is a vehicle> were excluded because they were excluded
from all feature counts presented in this article.

In our studies, concreteness decision latency was a
somewhat more sensitive measure than was lexical deci-
sion latency. Particularly in the case of concreteness deci-
sions (‘‘Is it a concrete object? That is, is it touchable?”),
one would expect that features that strongly signal a con-
crete object, and perhaps in addition, are concrete in and of
themselves, might be important. In fact, this might also ap-
ply to lexical decision, but in a somewhat muted manner.
That is, if a letter string activates aspects of meaning that
signal a concrete object, then that letter string must be a
word.

Arguments could be made for the potential importance
of basically all of the knowledge types. Table 7 presents the
overall number of features of each type (i.e., shared plus
distinctive), whereas Table 8 presents shared features only,
and Table 9 distinctive features only. Visual form and sur-
face features should be central because they describe phys-
ical parts (<has a tail>), shapes (<is round>), or the
materials used to make an object (<made of metal>), all
of which unambiguously signal a concrete object. Further-
more, visual form and surface features are relatively plen-
tiful in the norms. Paivio (1986) claimed that in addition to
being able to verbally reason about concrete things, people
can generate mental images for concrete words because
they refer to physical things in the world that we perceive.
He argued that this additional information associated with
concrete words makes their mental representations richer
and easier to activate. Presumably, the number of visual
features, and particularly the number of shared (relatively
common) visual features should increase ease of image-
ability and thus ease of a concreteness decision. That is,
shared visual form and surface features represent parts
and other aspects of living and nonliving things that are
common to many things, and thus would be imaged with
higher frequency relative to distinctive form and surface
features.



Table 9
Mean number per concept of distinctive features of each knowledge type

Knowledge type Study 1 Study 2 Study 3

Low NoF High NoF Low shared High shared Shared manipulated Distinctive manipulated

Low NoF High NoF Low NoF High NoF

Visual form
and surface

0.31 1.41 1.58 0.36 1.30 1.05 0.30 2.45

Encyclopedic 0.78 1.88 2.13 0.58 2.00 1.95 0.90 3.60
Tactile 0.03 0.09 0.07 0.02 0.10 0.25 0.05 0.15
Taste 0.02 0.06 0.02 0.02 0.05 0.00 0.00 0.05
Sound 0.00 0.20 0.09 0.05 0.10 0.35 0.00 0.05
Smell 0.03 0.05 0.05 0.00 0.10 0.00 0.05 0.15
Color 0.00 0.05 0.04 0.02 0.10 0.00 0.00 0.00
Visual motion 0.11 0.33 0.16 0.07 0.15 0.25 0.15 0.10
Function 0.81 1.88 1.89 0.60 2.55 2.20 1.45 2.60
Distinctive NoF 2.09 5.95 6.03 1.72 6.45 6.05 2.90 9.15
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Tactile features may also be central because if someone
knows what an object feels like, it must be touchable. Thus,
tactile features should facilitate concreteness decisions in
particular. Functional knowledge also seems like it should
predict decision latencies because if someone has physi-
cally used an object for some purpose (like a fork for eat-
ing), then it must be a touchable object.

Other sensory features might also be important. For
example, color likely signals something that is touchable,
although there are salient exceptions such as the sky. Taste
and smell features are somewhat ambiguous. Concrete
objects such as foods and fruits and vegetables have salient
taste features, and sometimes smell features as well.
However, gases seem like they have a taste, and definitely
have a smell, but they are not touchable. Sounds generally
emanate from concrete objects, although a sound such as
thunder is a salient exception, and sound itself is not
touchable or concrete. Visual motion features might signal
a concrete object because if a person has seen something
move about on its own, it is probably touchable. Some nat-
urally occurring non-concrete things such as clouds would
be salient exceptions.

Finally, the degree to which encyclopedic features are
related to concreteness is less clear. When Cree and McRae
(2003) originally classified features using the brain-region
knowledge type taxonomy, features that were not clearly
part of the other knowledge types were classified as ency-
clopedic. Thus, encyclopedic features include somewhat of
a mixed bag of information types. Some of these features,
such as <has sentimental value> or <is fun>, are clearly
not related to concreteness. However, many others do sig-
nal a concrete object. For example, some encyclopedic fea-
tures describe characteristic behaviors of entities, such as
<lays eggs> or <hibernates>. A large number of encyclope-
dic features convey information about location and time,
such as <lives in water>, <grows in gardens>, <used on
farms>, and <worn in winter>. A conservative estimate is
that these types of features comprise at least 60% of the
encyclopedic features when shared and distinctive features
are combined. These features signal two types of informa-
tion. First, the activities that are part of these featural
descriptions carry information about concreteness in that
they signal that the thing is alive, grows, is used, or is worn.
Second, they carry contextual information regarding the
situations in which the object or entity tends to occur, such
as the location at which it tends to be found. Bransford and
McCarrell (1974) have made claims regarding contextual
information that are relevant to these encyclopedic fea-
tures. They argued that because people interact directly
with concrete things in the world, but not with abstract
concepts, concrete words have more contextual informa-
tion associated with them (such as place and time as in-
dexed by these encyclopedic features), facilitating the
computation and use of these concepts. It is possible that
the greater the amount of this contextual information
associated with a concept, the easier a concreteness deci-
sion may be (and perhaps a lexical decision as well). In
addition, common contexts that are shared by numerous
objects and entities may play a particularly important role.

Methods

We counted the number of shared and distinctive fea-
tures of each knowledge type in each concept used in
Study 1, 2, or 3. These counts were the independent vari-
ables of interest in stepwise regression analyses. The
dependent variables were concreteness and lexical deci-
sion latencies when the items from all three studies were
combined. As in the regression analyses presented above,
there were 250 data points for each task, and ln(BNC) word
frequency and length in letters were forced in on the first
step to account for basic word-reading non-semantic
variables.

Results and discussion

The partial correlations and significance values are pre-
sented in Table 10. Note that tolerances were sufficiently
high in all cases. For concreteness decision latency, the
knowledge types that initially significantly predicted deci-
sion latency were shared encyclopedic features and shared
visual form and surface features. Due to partitioning of var-
iance, however, four variables entered the regression equa-
tion in the following order: shared encyclopedic features,



Table 10
Predicting decision latency with knowledge types

Predictor Partial r t(243) p

Concreteness decision
Shared encyclopedic �.23 �3.61 .001
Shared tactile �.16 �2.51 .01
Shared visual form and surface �.18 �2.88 .004
Shared taste �.14 �2.16 .03

Lexical decision t(243) p

Shared encyclopedic �.20 �3.12 .002
Shared visual form and surface �.19 �2.93 .004
Shared tactile �.16 �2.50 .01
Distinctive visual form and surface �.16 �2.51 .01
Shared taste �.14 �2.12 .04
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shared tactile features, shared visual form and surface fea-
tures, and shared taste features.

The results were similar for lexical decision latency. The
knowledge types that initially predicted decision latency
were again shared encyclopedic and shared visual form
and surface features. Due to partitioning of variance, five
variables entered the equation in the following order:
shared encyclopedic, shared visual form and surface,
shared tactile, distinctive visual form and surface, and
shared taste features.

These regressions further support the conclusion that
shared features are central to NoF effects. Significant pre-
dictors consisted almost exclusively of shared features.
Shared visual form and surface features are important be-
cause parts, shape, and materials are highly informative for
object concepts, and because features corresponding to
this knowledge type are relatively numerous. The one case
in which a distinctive knowledge type predicted variance
in decision latencies involved visual form and surface
knowledge. Shared encyclopedic features predicted deci-
sion latencies in both tasks. As stated above, although
these features do not fit into the other brain-region knowl-
edge types, many are central to object concepts and often
do signal concreteness (such as where something lives or
grows, its characteristic behaviors, or where an object
tends to be located or used). In addition, many of the ency-
clopedic features in the norms correspond to the amount of
contextual (situational) knowledge that people possess
about concrete objects. Approximately 70% of the shared
encyclopedic features were of this sort, versus about 60%
overall for encyclopedic features. As with visual form and
surface features, these types of encyclopedic features are
produced frequently by participants in the norming task.

With respect to shared tactile features, they predicted
concreteness decision latency presumably because the
instructions asked participants to indicate whether each
word referred to something that is a touchable. However,
it was somewhat surprising that they predicted lexical
decision latency as well, particularly because tactile fea-
tures are not numerous. It is perhaps the case that it is
meaningful if any tactile features are produced for a con-
cept. That is, if a person has actually handled something
and thus knows what it feels like, they are likely to produce
only one tactile feature such as <feels rough>, and this
information signals that a letter string corresponds to a
word that refers to a concrete touchable object. Therefore,
although tactile features are not numerous, their presence
is meaningful, signaling personal contact with the object or
entity. Finally, the amount of information about how
objects taste played a role. Taste features are important
for fruits, vegetables, and foods in the present experiments.
In other words, if people have eaten something, then they
know it is concrete, and they know that its name is a word.
As is the case with tactile features, people are likely to pro-
duce only one taste feature per concept (e.g., <tastes
sweet>).

Finally, it is somewhat surprising that functional
knowledge did not predict decision latencies, particularly
given the centrality of function in research on concepts
and semantic memory, and the relatively large number
of functional features in the norms. Knowledge regarding
how something is used seems like it should be a reliable
cue to concreteness or whether something is touchable in
particular. It is not entirely clear why the number of func-
tional features failed to predict either concreteness or lex-
ical decision latency. One possibility is that the null
effects of the number of function features hinges on the
fact that the number of different functions that an object
performs is not informative of concreteness, at least when
there exists at least one known function. That is, accord-
ing to the norms, some objects are used for multiple
related functions, such as <used by bouncing>, <used by
throwing>, <used for sports>, and <used for games> for
ball, whereas others have one feature referring to a single
dominant function, as in <used for cooking> for pot. It
may be the case that the fact that an object is consistently
used for a single function is as salient and informative a
cue as is the fact that it is used for multiple related func-
tions. Also note that for a feature to be part of the counts
that were used in this (and our other related) research, a
minimum of five of thirty participants must have pro-
duced it. Sometimes, as was the case with pot <used for
cooking>, one functional feature dominated (it was pro-
duced by 28 of 30 participants). Therefore, other related
functions did not reach threshold. For example, with
pot, three participants produced <used for boiling water>
and two produced <used for making stew>. As discussed
by Barsalou, Sloman, and Chaigneau (2005), some features
like <used for cooking> may stand in for a number of
related functions. It may be the case that functional
feature counts on a concept-wise basis might be some-
what obscured in some of these cases, which may have
contributed to the null effect of the number of functional
features.

In summary, the types of information that most
strongly drive NoF effects are knowledge regarding objects’
common parts, shapes, and materials, where and when
they commonly live, grow, and are located, how they feel,
and how they taste. These types of knowledge influence
both deciding that a word refers to a concrete object, and
deciding that a concept’s name is indeed a word. Finally,
these analyses buttress our conclusions regarding the
importance of shared features because virtually all of the
significant predictors involve shared features of various
types.
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General discussion

Pexman et al. (2002, 2003) found that concepts with
many features were responded to more quickly than those
with few features, and this was taken as evidence of a com-
putational advantage for words rich in semantic represen-
tation. The present Study 1 was essentially a replication of
Pexman’s studies, showing that the NoF effect is robust
when using larger sets of items that were better equated
on a large number of variables. The remainder of the pres-
ent article adds to the understanding of these empirical
phenomena in two major ways. First, we built on previous
research that has demonstrated that the distinction be-
tween shared and distinctive features has implications
for a number of aspects of conceptual processing. Studies
2 and 3 showed that increasing the number of shared fea-
tures facilitates processing to a greater extent than does
increasing the number of distinctive features, although
both types of features do facilitate decision latencies. Sec-
ond, previous research has provided a great deal of evi-
dence that object concepts are represented over multiple
modality-specific brain regions. We used insights from
these studies, most particularly the brain-region feature
type taxonomy of Cree and McRae (2003), to test whether
types of knowledge that are associated with various brain
regions contribute differentially to NoF effects. Study 4
showed that NoF effects are due primarily to shared ency-
clopedic, visual form and surface, tactile, and taste fea-
tures. In the next section, we describe how our results
and analyses constrain interpretations of NoF effects.

Decisions versus computing a concept

Much of the previous discussion has been framed in
terms of a decision-making account of our results. That
is, the idea has been that certain types of knowledge signal
concrete objects, and features that are common to numer-
ous concrete objects are better cues to concreteness and
lexical decisions than are those that apply to very few
objects.

One might wonder if it is possible to account for the
present results, at least those in the concreteness decision
task, by focusing instead on the computation of word
meaning. We begin with the assumption that a model
based on distributed semantic representations is required.
Consider, for example, distributed attractor network mod-
els of semantic memory such as those used by Cree,
McRae, and McNorgan (1999) or Plaut and Shallice
(1993). Typically, decision latency is simulated in these
models using some metric of network error, such as mean
squared error or cross-entropy. Error is recorded as the
network settles to a stable representation. Distributed fea-
ture-based models of semantic memory have sparse
semantic representations because each concept includes
only a small subset of the total number of possible fea-
tures. Therefore, the model has a bias to turn semantic
units off because it is trained to turn each unit off for the
majority of concepts. Because the most challenging aspect
of the model’s computations corresponds to activating
over time those feature units that are part of a concept,
by far the bulk of the error as the network settles is asso-
ciated with these units. To correctly simulate NoF effects, a
model would have to show less error for concepts that con-
tain a greater number of semantic feature units that need
to be activated. Therefore, in a system such as this, all
other factors being equal (as they were in our studies),
concepts with many active units (high NoF) engender
greater error than those with few active units (low NoF)
as the network settles. Therefore, it seems unlikely that
any model of this sort that uses an error measure to simu-
late latencies would be able to produce a processing
advantage for high NoF concepts.

To examine this issue, we implemented a model in
which the words representing each of the 541 concepts
in the norms were represented as three randomly acti-
vated units out of 30 word form input units. There were
2349 semantic feature output units, each representing a
feature from McRae et al.’s (2005) norms (all taxonomic
features were excluded, as in all analyses reported above).
The model was trained to settle on a concept’s representa-
tion over 20 iterations (‘‘time steps”) using the continuous
recurrent backpropagation-through-time algorithm (Pearl-
mutter, 1995) and cross-entropy as the error metric. The
identical model is described in full in Cree et al. (2006). Fol-
lowing training, we simulated Study 1 using the items
from that study. As expected, error over the semantic units
was greater for high NoF concepts than for low NoF con-
cepts until the last few time steps when both settled to
approximately the same error levels. There was no differ-
ence in cross-entropy error between the high and low-
shared conditions of Study 2 (these conditions were iden-
tical in terms of overall NoF). Finally, as in the simulation
of Study 1, the model incorrectly predicted reverse NoF
effects in Study 3.

It is possible, of course, that other measures from a
distributed attractor network could simulate decision
latencies. One such measure might be the total amount
of activation in the system, with the assumption being
that decision latency is monotonically related to total
activation. Again, the influence of such a measure is
self-evident for basic NoF effects, and in this case, it cor-
rectly accounts for the results. In the simulation of Study
1, the total activation was greater for the high NoF group
from time steps 10–20 of the computation of the seman-
tic representations from word form. That is, the greater
the number of features that are activated, the greater
the overall activation, and the shorter the predicted deci-
sion latency.

The next question is whether a model of this sort could
account for the influence of shared features. The answer
appears to be no. The total activation measure shows
extremely small differences between the high and
low-shared groups of Study 2. For Study 3, the simulation
predicts shorter decision latencies for the two high NoF
conditions than for the two low NoF conditions. It does
predict a small disadvantage late in processing (time steps
14–20) for the low NoF shared-manipulated condition as
compared to the low NoF distinctive-manipulated condi-
tion, although this difference is much smaller than
between the low NoF distinctive-manipulated condition
and the two high NoF conditions, which does not mirror
the results of Study 3. Thus, it does not appear that an attrac-
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tor network model with distributed feature-based represen-
tations successfully accounts for the present results.

It should be noted that a failure to simulate human
empirical results is actually a null effect, similar to an
experimental null effect. That is, it is possible that a differ-
ent type of distributed network might be able to simulate
our studies. However, given these simulation results, one
question that follows is whether it is possible that a deci-
sion-making account could provide an explanation for
these results. There exist other studies of distinctive versus
shared features that highlight the importance of decision
processes. Contrast the present results with those of Cree
et al. (2006). They found advantages in feature verification
latencies for distinctive over shared features in both living
and nonliving things (although see Randall et al., 2004,
who found an advantage for distinctive features of nonliv-
ing things, but a disadvantage for distinctive features of
living things). At first blush, these results appear to be
inconsistent with those of the present Studies 2 and 3. In
Study 1 of Cree et al., a concept name was presented first,
followed by a feature name. Participants were faster to
decide that a feature was part of a concept if the feature
was distinctive. That is, there was an advantage for distinc-
tive features when the decision entailed evaluating a specific
concept-feature relation, a type of decision that differs sub-
stantially in nature from deciding whether a letter string
corresponds to a concrete concept or an English word.

Cree et al. (2006) simulated this result by inputting the
concept name, then recording the activation of the target
feature node (using the same model as used herein). Dis-
tinctive features were activated more quickly than were
matched shared features. Given that the decision entailed
directly evaluating a concept-feature relation, using the
assumption that the network’s activation of a specific fea-
ture is monotonically related to feature verification latency
provided a good fit to the data. Thus, the difference in the
importance of distinctive versus shared features in the two
studies is due directly to the decision that was required,
and this difference is apparent in the ability of an attractor
network to simulate the data.

One possible method to simulate a concrete-abstract
decision process is to use something akin to a random walk
model of conceptual decision making (Joordens, Piercey, &
Azerbehi, 2003; Ratcliff, Gomez, & McKoon, 2004). Such a
model includes two thresholds, one representing a con-
crete decision and another representing an abstract deci-
sion. The system might behave as follows. A word is
presented and its semantic features are computed. When
a feature that signals a concrete object is activated, such
as a visual form and surface feature, certain encyclopedic
features, tactile features, or taste features, the system
moves closer to the concrete threshold. The greater the
number of these types of features that are computed, the
shorter the decision latency. Shared features that are com-
mon to numerous concrete objects would thus facilitate
decisions for two reasons. First, they are better cues to con-
creteness because they better cue the fact that the word re-
fers to something that is a member of the large category of
concrete objects and entities. Second, they are more com-
mon (frequent) familiar in of themselves. Therefore, they
are cues that people are more familiar with.
Similar well-known results have been found for cate-
gory verification tasks, such as ‘‘Is a robin a bird?”, that
are analogous to the concreteness decision task used in
our studies. In category verification, the relevant shared
features are those that are shared by members of the cate-
gory, that is, bird in this case (Rosch & Mervis, 1975). Typ-
ical exemplars such as robin for the category bird possess a
greater number of features that are shared by category
exemplars than do atypical exemplars such as ostrich. As
such, participants rate those exemplars as more typical,
and they verify them more quickly as a member of the
category (Smith et al., 1974). These category verification
effects have most often been explained in terms of decision
processes rather than the speed of concept retrieval. Note
that the notion of shared features is thus relative to the
required decision. That is, what is shared across concepts
depends critically on the category that is relevant to the task.

If our concreteness decision results are analogous to
category verification, one would expect that concreteness
ratings might mirror them in the same manner that typi-
cality ratings mirror category verification latency. That is,
if off-line concreteness ratings show a pattern that is sim-
ilar to the concreteness decision latencies, then this would
provide additional evidence for our decision-making
account. We tested this idea by collecting concreteness
ratings for the 250 stimuli included in the three studies
from 31 new participants using instructions based on those
of Toglia and Battig (1978). As is customary for concrete-
ness ratings, a 7-point scale was used with seven corre-
sponding to definitely concrete, and the resulting means
were scaled by 100. An additional 250 words referring to
abstract concepts were included to anchor the scale. As
would be expected given that all of our items refer to con-
crete objects and entities, the variance in the ratings for
those items was quite low and ratings tended to be in
the upper end of the scale. Although the differences were
quite small, the results did mirror the concreteness deci-
sion latencies. For Study 1, concreteness ratings were high-
er for high NoF (M = 634) than for low NoF items (M = 614),
t(126) = 3.07, p < .01. For Study 2, concreteness ratings
were higher for high shared (M = 632) than for low-shared
items (M = 621), t(108) = 2.20, p < .03. For Study 3, the pat-
tern of means was similar to the concreteness decision
latencies in that concreteness ratings were lowest for the
low NoF shared-manipulated condition (M = 610), and
the other three conditions were similar (high NoF shared
manipulated, M = 629; low NoF distinctive manipulated,
M = 623; high NoF distinctive manipulated, M = 622). How-
ever, neither of main effects nor the interaction were sig-
nificant, p > .1 in all three cases. In summary, the
concreteness ratings pattern with the concreteness deci-
sion latencies, thus bolstering our decision-making
account.

In category verification tasks, features that are not
part of category exemplars cue a ‘‘no” response. Research
has begun to be conducted on abstract concepts, and it is
clear that the types of knowledge underlying them differ
from that of concrete concepts (Barsalou & Wiemer-Has-
tings, 2005). Therefore, the types of knowledge computed
when a word referring to an abstract concept is read dif-
fer from concrete concepts, and they push the system to-
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ward making an abstract ‘‘no” decision. When an ab-
stract or intangible feature is activated, the system
moves closer to the abstract threshold. Whatever crite-
rion is reached first determines the system’s decision.
The fact that abstract decision latencies were longer than
concrete decision latencies in all three experiments may
be due to the fact that knowledge underlying abstract
concepts is less clear. More likely, this occurred because
the concreteness decision task was presented to partici-
pants as if it required a yes/no response, and negative re-
sponses are virtually always slower than positive ones in
any binary decision task. In fact, one way that such ‘‘no” re-
sponses could be modeled is to include an inherent drift to-
ward that decision (in this case, that the word refers to an
abstract concept). That is, there could be an inherent drift to-
ward a ‘‘no” response so that positive evidence is required to
respond ‘‘yes”, and a ‘‘no” response is generated in the ab-
sence of such evidence. This is similar in spirit to the time
deadline used in Grainger and Jacobs’ (1996) multiple
read-out model.

Another way to think about the influence of shared
features on concreteness decision is to consider analo-
gous orthographic effects on lexical decision. Numerous
studies have shown that orthographic factors such as
frequent letters or sub-lexical letter strings facilitate lex-
ical decisions (Coltheart et al., 1977). For example, a
variable such as orthographic neighborhood size indexes
the degree to which a letter string shares orthographic
‘‘features” (letters, bigrams, trigrams, etc.) with other
words. Just as being more similar to other words facili-
tates lexical decisions, being more similar to other con-
crete objects and entities facilitates concreteness
decisions.

With respect to our lexical decision results, we con-
trolled for word recognition variables that are known to
influence lexical decision latencies. Therefore, any differ-
ences found in our studies were due to semantic variables
because the words in various conditions were equally
word-like with respect to orthographic and phonological
variables. Semantic knowledge does influence lexical
decisions, although not as strongly as it influences seman-
tic-based decisions (Becker et al., 1997). When making a
decision regarding whether a letter string is a word, infor-
mation signaling that it refers to a concrete object also
signals that the letter string is indeed a word. Of course,
the same could be said for numerous types of informa-
tion; semantic knowledge that signals an abstract con-
cept, an activity (a verb such as jog), and so on, also
signals that the letter string corresponds to a word. In
our studies, however, we were concerned with differences
within concrete concepts only. Therefore, features that
are shared by numerous concrete concepts push a binary
decision system toward a ‘‘word” decision, but presum-
ably their influence would be weaker (less easily detect-
able) than in the case in which the decision was indeed
whether the word referred to a concrete concept. Thus,
the observed influence of shared features was weaker in
lexical decision than in the concreteness decision tasks
of Studies 2 and 3.

In summary, it is clear that the influence of a variable
such as the degree to which features are shared across con-
cepts depends crucially on the task under consideration.
Feature verification shows an advantage for distinctive fea-
tures. Shared features inhibit a task such as picture naming
in which participants must distinguish a basic level con-
cept from other similar concepts. Finally, features that
are shared across category members facilitate decisions
regarding membership in that category.
Conclusion

The present research provides additional insight into
why words that possess rich semantic representations
are responded to more quickly. Using tightly matched lists
of concrete concepts, we demonstrated that concepts with
many features are responded to faster than those with few
features in lexical and concreteness decision tasks. We also
demonstrated that this facilitation is modulated by
whether features are distinctive or shared. Finally, the
most important types of knowledge driving these deci-
sion-based effects are shared visual form and surface,
encyclopedic, tactile, and taste features.
Appendix A

Stimuli used in Studies 1A and 1B
Low number of features
 High number of features
ball
 axe

bayonet
 balloon

bedroom
 barn

birch
 basement

biscuit
 bathtub

bluejay
 bear

boat
 blender

broccoli
 bra

brush
 bus

bucket
 camel

cabinet
 camisole

catfish
 cannon

cherry
 canoe

clamp
 carrot

cloak
 chimp

cod
 cougar

cupboard
 cow

dish
 coyote

doll
 crab

dove
 desk

eel
 dog

finch
 drapes

flamingo
 fawn

garage
 freezer

hook
 garlic

hornet
 goat

inn
 gorilla

mackerel
 grenade

mirror
 hammer

mixer
 hose

moth
 iguana

oak
 kettle
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Appendix A (continued)
Low number of features
 High number of features
otter
 lettuce

pan
 lion

parka
 missile

peas
 mushroom

pheasant
 necklace

pin
 nylons

pine
 olive

platypus
 pearl

pot
 pen

pumpkin
 pencil

razor
 pickle

rhubarb
 pig

rock
 pony

rocker
 potato

scissors
 radish

shawl
 rake

skillet
 rat

skunk
 robe

snail
 rooster

spinach
 sandals

squid
 saucer

starling
 screws

stone
 seal

taxi
 spear

tent
 spoon

toilet
 swimsuit

toy
 sword

tray
 tiger

trolley
 toad

turnip
 train

veil
 tricycle

whale
 wasp
Appendix B

Stimuli used in Studies 2A and 2B
Low number of shared
features
High number of shared
features
basement
 bag

beaver
 ball

bike
 bazooka

bolts
 bear

bomb
 beetle

broom
 bookcase

bull
 bowl

calf
 buffalo

chair
 buggy

church
 bureau

cigar
 cabinet

cork
 car

crown
 caribou

curtains
 coyote

dog
 crab
Appendix B (continued)
Low number of shared
features
High number of shared
features
doll
 dish

drapes
 dress

faucet
 dresser

flea
 elk

garage
 flute

gate
 fox

gloves
 frog

grenade
 jacket

hornet
 knife

jar
 lion

jeans
 lobster

kettle
 marble

lime
 mushroom

medal
 oak

minnow
 olive

mittens
 pear

necklace
 piano

octopus
 plate

onions
 pliers

pajamas
 pony

pie
 pot

pigeon
 raccoon

pillow
 radish

pine
 scooter

prune
 shack

pumpkin
 shrimp

ruler
 skillet

ship
 slippers

sink
 spatula

skirt
 spear

skis
 squirrel

sofa
 stone

swimsuit
 tack

tomahawk
 tractor

train
 tray

unicycle
 tricycle

veil
 truck

vine
 tuba

violin
 van

walrus
 walnut
Appendix C

Stimuli used in Studies 3A and 3B
Low number of
distinctive features
High number of
distinctive features
Distinctive features manipulated

brick
 anchor

cedar
 apartment

flamingo
 barn

garage
 basement

goldfish
 bathtub
(continued on next page)
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Appendix C (continued)
Low number of
distinctive features
High number of
distinctive features
hook
 book

mirror
 bra

parsley
 canoe

rock
 cigarette

sack
 crown

saddle
 faucet

scissors
 flea

seaweed
 hose

shawl
 kettle

shelves
 nylons

skunk
 onions

slippers
 pyramid

stick
 ruler

toy
 sandals

worm
 shovel
Shared features manipulated

bagpipe
 apron

beehive
 balloon

bouquet
 banner

cape
 bolts

certificate
 box

clock
 carpet

envelope
 cottage

fence
 dolphin

hut
 drapes

key
 freezer

menu
 goat

muzzle
 pigeon

pepper
 potato

pier
 prune

pine
 revolver

projector
 screws

radio
 sheep

tape
 skirt

unicycle
 sled

wheel
 stool
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