
THEORETICAL REVIEW

Lexical stress assignment as a problem of probabilistic inference

Olessia Jouravlev & Stephen J. Lupker

Published online: 31 January 2015
# Psychonomic Society, Inc. 2015

Abstract A new conceptualization of the process of stress
assignment, couched in the principles of (Bayesian) probabi-
listic inference, is introduced in this paper. According to this
approach, in deciding where to place stress in a polysyllabic
word, a reader estimates the posterior probabilities of alterna-
tive stress patterns. This estimation is accomplished by
adjusting a prior belief about the likelihoods of alternative
stress patterns (derived from experience with the distribution
of stress patterns in the language) by using lexical and non-
lexical sources of evidence for stress derived from the ortho-
graphic input. The proposed theoretical framework was used
to compute probabilities of stress patterns for Russian disyl-
labic words and nonwords which were then compared with
the performance of readers. The results showed that the esti-
mated probabilities of stress patterns were reflective of actual
stress assignment performance and of naming latencies, sug-
gesting that the mechanisms that are involved in the process of
stress assignment might indeed be inferentially-based.

Keywords Lexical stress assignment . Reading . Bayesian
probabilities . Russian .Word naming . Nonword naming

Introduction

The processes by which readers determine a word’s stress, a
process that has been shown to play an important role in overt
and silent reading of polysyllabic words (Ashby & Clifton,
2005; Breen & Clifton, 2011), has become an object of

increased scientific interest in the field of reading research.
Both of the main computational approaches to reading (i.e.,
the dual-route view and the connectionist view) have ac-
knowledged that any truly successful model of word reading
needs to provide an explanation of the principles of lexical
stress assignment. As a result, attempts to model this process
have been made within both frameworks (Arciuli, Monaghan,
& Ševa, 2010; Perry, Ziegler, & Zorzi, 2010; Rastle &
Coltheart, 2000; Ševa, Monaghan, & Arciuli, 2009).

Within the dual-route approach, it has been suggested that,
in English, stress can be assigned lexically via retrieval of
stress information frommemory or as a result of computations
by a non-lexical, rule-based system using an algorithm that is
mainly based on the knowledge of associations between mor-
phemes and stress patterns in that language, and, to some
extent, additional orthographic (e.g., bigram legality) and pho-
nological (e.g., schwa vowel) information (Rastle &
Coltheart, 2000). Within the connectionist framework, the
models of Ševa et al. (2009) and Arciuli et al. (2010) present
three-layer supervised feed-forward networks that map the
orthography of English disyllables onto stress patterns. The
orthographic input layer is connected to the stress pattern out-
put layer via a layer of hidden units. In the process of training,
the connectionist models of stress assignment learn weights
on connections among units that reflect the statistical relations
that exist between the orthographies of words and their stress
patterns. Finally, the CDP++ (Perry et al., 2010) is a model of
word reading built on the strengths of the dual-route and the
connectionist models. Similar to the dual-route model, within
the CDP++, orthography is mapped onto stress representa-
tions both lexically and sub-lexically. However, the sub-
lexical route is represented by a connectionist two-layer net-
work of phonological assembly (the TLA network) that en-
codes statistical regularities rather than by a set of rules.

As seen in Fig. 1, these models demonstrate good perfor-
mance in assigning stress to words and reasonably high
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agreement on stress assignment for nonwords that are named
with first syllable stress by native speakers. Their performance
on the naming of nonwords that are assigned second syllable
stress by speakers is considerably less impressive. Relative to
other models, the CDP++ performs better, but it is still far
from perfect, suggesting that alternative approaches to
explaining the mechanisms of stress assignment should also
be considered.

In particular, one may conceptualize the process of stress
assignment in reading within the framework of probabilistic
approaches to human cognition, approaches that are becoming
increasingly popular in cognitive psychology and neurosci-
ence (Clark, 2013; Pothos & Busemeyer, 2013). In this paper,
we assess whether the process of stress assignment in reading
disyllabic words and nonwords in Russian, a language with an
extremely opaque lexical stress system, can be conceived of as
a problem of probabilistic inference making (hereafter referred
to as the probabilistic inferential approach).We start the paper
with an overview of the general principles of probabilistic

inference as related to human cognition, then we describe a
possible implementation of the process of stress assignment in
reading based on probabilistic inference making. We finish by
examining whether the patterns of stress assignment perfor-
mance predicted by this probabilistically based process are, in
fact, observed in the behavior of Russian readers naming di-
syllabic words and nonwords.

The probabilistic nature of human cognition

People constantly face the challenge of interpreting uncertain
signals coming from a noisy environment and acting in the
face of incomplete knowledge. One of the ways of dealing
with this uncertainty is to process information using a proba-
bilistic framework. In the presence of uncertainty, a person can
make rational decisions by considering estimates of the prob-
abilities of events. Thus, the human mind can potentially be
perceived as an evaluator of the likelihoods of events with the
aim being to make near optimal decisions (Anderson, 1991).
The view of the human mind as a probability estimator, which
is associatedwith Bayesian theory, has beenwidely adopted to
explain various cognitive processes (for a review see Griffiths,
Kemp, & Tenenbaum, 2008), although this approach also
finds its opponents (Bowers & Davis, 2012; Jones & Love,
2011).

Probability can be viewed as a numerical measure of the
relative frequency of an event or the strength of a belief in a
certain proposition. In a probabilistic system, one considers the
probability of various possible hypotheses about the state of the
environment by considering the sensory input received from
this environment and prior knowledge about the state of the
world. Such probability calculations may very well then be
based on some form of Bayesian inference which is based upon
a simple formula known as Bayes’ rule (Bayes, 1763/1958):

P h
���d

� �
¼

P d
���h

� �
P hð Þ

P dð Þ ð1Þ

where h refers to a hypothesis, and d stands for some data used
as evidence in the process of inference. In computing the
probability of the hypothesis given the data, also known as
the posterior probability, one uses knowledge of the probabil-
ity of the observed data given the hypothesis, or the likelihood
of evidence, P(d|h), the probability of the hypothesis before
any data were observed, or the prior probability, P(h), and the
overall probability of observing those data regardless of the
hypothesis, P(d).

The complexity of the world that our mind has to grasp
makes such metaphors as Bthe Bayesian brain^ or Bthe prob-
abilistic mind^ very popular. In fact, the idea of human cog-
nition being probabilistic in nature has been described as Bthe

Fig. 1 Correct stress agreement (percentage) for the model of Rastle and
Coltheart (2000), the model of Ševa et al. (2009), and the CDP++ on (A)
English disyllabic words from the CELEX database (Baayen et al., 1995),
(B) Rastle and Coltheart’s (2000) English nonwords, and (C) Kelly’s
(2004) English nonwords
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most exciting and revolutionary paradigm to hit cognitive sci-
ence since connectionism^ (Movellan & Nelson, 2001,
p.691). According to this idea, people learn probabilities of
the occurrence of various events that they observe in the world
as they experience the world and use this knowledge to esti-
mate likelihoods of those events in particular situations
(Peterson & Beach, 1967; Zacks & Hasher, 2002). In this
way, the human mind operates like a statistician, although
people are often vulnerable to incorrect assumptions about
the relevance of any observed sample to the population, which
can give rise to incorrect assessments of probabilities and,
therefore, various errors and biases in predictions (for a re-
view, see Hansson, Juslin, & Winman, 2008).

Originally, the Bayesian view of cognition was thought to
be able to explain the computational level of processing only.
Currently, however, there is growing evidence that probabilis-
tic analysis is relevant to human cognition at the neuronal
level as well (for a review, see Doya, Ishii, Pouget, & Rao,
2007), and, therefore, probabilistic models of cognition appear
to also have biological plausibility.

Probabilistic approaches have been widely applied to ex-
plain many areas of human cognition including visual percep-
tion (Feldman, 2001), object recognition (Kersten,
Mamassian, & Yuille, 2004), eye movements (Najemnik &
Geisler, 2009), and theory of the mind (Baker, Saxe, &
Tenenbaum, 2009). Most relevant to the present paper, anoth-
er aspect of cognition that many researchers have evaluated
using a probabilistic inferential approach is language (for a
review, see Jurafsky, 2003). Traditionally, language has been
viewed as involving a set of abstract units that are generated
and used according to some formal, deterministic rules.
However, in reality, language is characterized by the presence
of significant noise and ambiguity that speakers must success-
fully deal with, possibly by following the principles of prob-
abilistic constraint satisfaction (McRae, Spivey-Knowlton, &
Tanenhaus, 1998; Seidenberg & MacDonald, 1999). In fact,
the principles of probabilistic inference have already been
adopted by researchers in some areas of language research
(Chater & Manning, 2006; Norris, 2006; Norris &
Kinoshita, 2008; Norris & McQueen, 2008, Xu &
Tenenbaum, 2007).

Stress assignment as a problem of probabilistic inference

In the present paper, the principles of probabilistic inference
are extended to the area of lexical stress assignment which can
be viewed as the process of posterior probability estimation
for alternative hypotheses concerning the position of stress.
There would, presumably, be as many hypotheses considered
for a word as there are syllables in the word. This theorizing,
of course, implies that a reader is aware of the syllabic length
of a word before the probability of each hypothesis is comput-
ed. Although there is currently no strong evidence showing a

time-period when the discrimination of words according to
their syllabic length occurs, it seems likely that it happens at
an early stage of processing, and there is reasonable empirical
support for this claim (Ashby & Rayner, 2004; Ashby &
Martin, 2008). Further, the assumption that readers consider
only those stress patterns that are possible in a word has been
made in all previous models of polysyllabic word reading and
models of stress assignment (Perry et al., 2010; Ševa et al.,
2009). As in the CDP++ model (Perry et al., 2010), a reason-
able assumption is that the decision concerning the number of
syllables that a word has is most likely based on information
about the number of vowel graphemes the word contains.1 A
similar assumption, that readers infer the number of syllables
based on the number of identified vowel categories, was made
in Perry, Ziegler, and Zorzi’s (2013) most recent extension of
the CDP++ model.

Within our proposed framework, the computation of the
posterior probability of each stress pattern in a word given
some evidence, P(stress|evidence), further assumes that
readers have some knowledge of the prior probability that
any word in a given language has a hypothesized stress pat-
tern, P(stress), as well as knowledge of the probability that the
evidence made available from processing the word is associ-
ated with that hypothesized stress pattern, P(evidence|stress).
The product of these two terms is divided by the sum of the
products of prior probabilities and probabilities of evidence
for all alternatives (stress’) in the hypothesis space (STRESS)
to calculate P(stress|evidence). Thus, Bayes’ formula in the
present circumstances can be written as follows:

P stress
���evidence

� �

¼
P evidence

���stress
� �

P stressð Þ
X

stress0∈STRESS
P evidence

���stress0
� �

P stress0ð Þ
ð2Þ

A reader’s estimates of the prior probabilities of stress pat-
terns in a language, P(stress) would, presumably, be based on
that individual’s experience with the language. The assump-
tionmade here is that the probability estimates used by readers
are essentially equivalent to the probabilities that actually exist
in their language. Equating the prior probability of a stress
pattern with the relative frequency of that stress pattern in
the language is motivated by the fact that in many realms of
language processing, readers have been shown to be sensitive

1 This assumption does raise the question of how readers cope with situ-
ations in which the number of syllables and the number of vowel graph-
emes differ (e.g., when a silent vowel –e occurs at the end of some
monosyllabic English words or for the so-called Bhiatus^ words). Those
types of words do appear to be more difficult for readers to deal with
(Chetail & Content, 2012, 2013).
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to frequency (e.g., word frequency (Balota & Chumbley,
1985), frequency of meanings of polysemous words (Dell,
1990), frequency of co-occurrence of words (Saffran,
Newport, & Aslin, 1996), etc.). Therefore, it is quite likely
that readers would have a reasonably good impression of the
frequency with which various stress patterns occur in their
language. Indeed, there have been a number of empirical stud-
ies showing exactly that (Colombo, 1992; Monsell, Doyle, &
Haggard, 1989). Some researchers even have claimed that
readers not only know the most frequent stress pattern but also
assign it by default (Black & Byng, 1986; Colombo, 1992) in
many circumstances. Note that, within the framework being
proposed here, the claim is not being made that there is a
default assignment of the more frequent stress pattern.
Rather, information about the frequency of stress patterns only
establishes a bias towards the more frequent pattern that can
be diminished or reversed whenever evidence strongly asso-
ciated with an alternative stress pattern exists.

In order to calculate the posterior probability of a hypoth-
esized stress pattern, it is, of course, also necessary to identify
the sources of evidence for stress. What evidence do readers
use in trying to decide what syllable of a word should be
stressed? In processing a polysyllabic written word, readers
may assign lexical stress by retrieving it frommemory follow-
ing lexical access, or by computing it sub-lexically based on
some stress cues present in the language’s orthography. Thus,
there are two sources of evidence for stress: lexical and non-
lexical.

Lexical evidence (LE) for stress is not probabilistic, but
rather deterministic. If a reader accesses the lexical represen-
tation of a word and retrieves its corresponding stress pattern
from memory, then s/he knows what the correct stress pattern
for this word is. In other words, P(LE|stress) = 1, if a hypoth-
esized stress pattern is a pattern that is stored with the lexical
representation of the word. Due to the deterministic nature of
lexical evidence, the posterior probability of a stress pattern
computed based on the lexical evidence is also deterministic:

P stress
���LE

� �
¼

P LE
���stress

� �
P stressð Þ

X

stress0∈STRESS
P LE

���stress0
� �

P stress0ð Þ

¼ 1*P stressð Þ
1*P stressð Þ þ 0*P stress0ð Þ ¼ 1: ð3Þ

Lexical evidence for stress, therefore, has perfect reliabili-
ty; however, the likelihood of reliance on this evidence will
vary across words due to differences in the speed of lexical
access and, hence, the speed of retrieval of stress information
from lexical memory. Thus, lexical evidence for stress would
be more likely to be used when the representation of the word
in the mental lexicon gets activated rapidly (e.g., when the

word is a high frequency word). On the other hand, when
lexical access is relatively slower (e.g., the word is a low
frequency word), the chance that perfectly reliable, but not
readily available, lexical evidence for stress would be used
by readers declines, meaning that the probability of using less
reliable, but more readily available, non-lexical evidence for
stress, evidence that the orthography provides, increases.
Indeed, it has been empirically demonstrated that lexical stress
can be assigned based on the non-lexical evidence provided in
the word’s orthography (Arciuli et al. 2010; Burani &
Arduino, 2004; Colombo, 1992; Jouravlev & Lupker, 2014),
and also that the reliance on non-lexical evidence in assigning
stress, in particular, on the spelling-to-stress consistency of
word endings, is greater for low frequency than for high fre-
quency words (Colombo, 1992).

The second source of evidence for stress, therefore, is non-
lexical evidence (non-LE) provided by the orthography. In
prior research, a number of non-lexical cues to stress, includ-
ing diacritics (Gutiérrez-Palma & Palma-Reyes, 2008;
Protopapas, 2006), orthographic complexity of word onsets
and codas (Kelly, Morris, & Verrekia, 1998; Kelly, 2004;
Jouravlev & Lupker, submitted), and the orthography of var-
ious word segments (Arciuli & Cupples, 2006; Colombo,
1992; Jouravlev & Lupker, 2014, submitted) among others,
have been identified. In any given language, there are likely a
number of sources of non-lexical evidence for stress. Each
source of evidence, or stress cue, used in the calculation of
stress must, above all, be reliable, meaning that it should be in
a significant probabilistic relation with a specific stress pattern
(i.e., the cue should have high Bvalidity^) and it also should be
known to be used by readers (i.e., the cue should have high
Butility^).

One assumptionmade here is that readers consider multiple
sources of evidence in making stress assignment decisions in a
sequential fashion, starting with the most informative cue to
stress in a language and going to the least informative one
(although, in the mathematical formulation, the order in which
the cues are considered is usually irrelevant).2 Thus, if there
are two non-lexical stress cues in the language A and B, and A
is a more informative one, first, the posterior probabilities of
the stress patterns given evidence A, P(stress|A), are

2 In those cases when valid sources of evidence for stress overlap (e.g., if
the orthography of a syllable and, at the same time, the orthography of
some sub-component of that syllable, are used as stress cues), the order in
which the cues are considered is important due to the fact that some of the
information that they are based on is the same. In this case, the evidence
from the source that is larger in size is entered into the equation first.
Then, the evidence from the other source, corrected for conditional de-
pendence with the larger source of evidence, is entered. The process of
correction for conditional dependence of two overlapping components is
described in more detail later in the paper.
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calculated by using the following equation:

P stress
���non−LE A

� �

¼
P non−LE A

���stress
� �

P stressð Þ
X

stress0∈STRESS
P non−LE A

���stress0
� �

P stress0ð Þ
ð4Þ

In this equation, the likelihood of evidence A given a hy-
pothesized stress pattern, P(non-LE_A|stress), is computed by
finding the proportion of words containing this particular evi-
dence across all words of the corpus that have the hypothesized
stress pattern. P(non-LE_A|stress’) is estimated by finding the
proportion of words containing this particular evidence across
all words of the corpus that do not have the hypothesized stress
pattern. For example, in establishing the likelihood of evidence
for words ending in B-et^ in English (assuming that that word
ending is a valid source of evidence for stress in this language)
given a trochaic stress pattern, onewould determine the number
of trochaically stressed words that have that word ending and,
then, one would find what proportion in all English words with
trochaic stress that this particular group of words (i.e., the –et
word group) constitutes.

Next, the posterior probabilities of the stress patterns given
both evidence A and evidence B is calculated. At this stage,
the prior probabilities are not those that reflect the frequency
of various stress patterns in the language, but rather the pos-
terior probabilities calculated based on the existence of evi-
dence A (i.e., P(stress|non-LE_A), which will be referred to as
P(stress)*). Thus, at the second stage of the computation, the
formula is:

P stress
���non−LE A;B

� �

¼
P non−LE B

���stress
� �

P stressð Þ*
X

stress0∈STRESS
P non−LE B

���stress0
� �

1−P stressð Þ*ð Þ
ð5Þ

This process continues until all the relevant stress cues used
by readers have been considered. Note that the stepwise ap-
proach in updating the posterior probabilities using several
sources of evidence assumes that these sources are condition-
ally independent of each other. Two sources can be considered
independent if the existence of one of them does not change
the impact (i.e., the probability associated with the various
possible stress assignments) of the other source. In the case
of cues to stress this is not always the case, in that some
sources might be correlated. Thus, the posterior probabilities
computed following the above equation may be slightly

inaccurate. However, it is possible to essentially remove the
statistical dependency, as will be discussed below.

In order to model the stress assignment process in any
language, one must, of course, have a good idea of what the
non-lexical sources of evidence for stress are that are used/
acquired by readers of that language. There are likely to be a
number of sources of evidence for stress that are in probabi-
listic relations with stress patterns in the language. However,
some of these sources might be providing the same cue to the
word’s stress pattern, and, thus, given this redundancy, one or
more of these stress cues may be ignored by readers. Instead,
readers might base their stress assignment decisions only on
the most reliable subset of the sources of evidence for stress
present in the language in most situations. We assume that
during the process of language learning, readers attempt to
find the simplest possible set of orthographic stress cues that
would still allow them to assign stress to most of the words
successfully. This process of converging on a certain set of
sources of evidence for stress during the process of learning,
however, is not a topic addressed in the present research. For
present purposes, we will rely on the work of Jouravlev (2014)
and Jouravlev and Lupker (submitted) who have identified
three important sources of non-lexical evidence for stress as-
signment in Russian.

In summary, in the process of stress assignment, a reader
might utilize deterministic, lexical evidence (i.e., the stress
pattern is retrieved directly from memory) or probabilistic,
non-lexical evidence (i.e., the stress pattern is computed based
on the orthographic stress cues contained in a word). How
likely is one or the other source of evidence for stress to be
used for a particular word? As has been already mentioned,
these probabilities will likely depend on the ease of lexical
access. If the lexical representation of a word is easily
accessed by readers, then we should see greater reliance on
stress pattern information retrieved from lexical memory than
for words for which lexical access is relatively slow. Prior
research provides us with an extensive list of various item
characteristics that are known to have an impact on the ease
of lexical access (for an overview of major item effects see
Adelman, 2012), with word frequency derived from the oc-
currence of words in a language corpus being the most widely
used index of the speed of lexical access. Therefore, a word
frequency measure, in particular a relatively new measure of
word frequency, the Zipf-scale (van Heuven, Walter,
Mandera, Keuleers, and Brysbaert, 2014), was used as an
estimate of the likelihood that readers would base their stress
assignment decisions on lexical evidence.

The Zipf score is a transformation of a more traditional
measure of frequency, frequency per million words (fpmw),
using the following formula:

Zipf score ¼ log10 fpmwð Þ þ 3: ð6Þ
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The Zipf score ranges from 1 to 7, where 1 corresponds to
words of very low frequency (fpmw = .01) and 7 corresponds
to words of very high frequency (fpmw = 10,000). The Zipf
score is assumed to be related to the ease of lexical access and,
therefore, it should be related to the likelihood of utilization of
lexical evidence for stress (P(LE)) in the process of stress
assignment. We assumed that when readers process very fre-
quent words, that is, those with the maximum Zipf score of 7,
they would always assign stress based on the lexical evidence
(i.e., P(LE) = 1). On the other hand, when extremely low
frequency words with the minimum Zipf score of 1 as well
as nonwords are processed, lexical evidence would not be
used at all in the process of stress assignment (P(LE) = 0).
For intermediate Zipf scores, the assumption was made that
there is a linear relationship between the Zipf score and the
likelihood of utilization of lexical evidence for stress. For
instance, for a word with the Zipf score of 4, a score that is
located right in the middle of the scale from 1 to 7, P(LE) =
.50.

If stress is not assigned based on the lexical evidence for
stress, then it is assigned based on the non-lexical evidence,
hence, the likelihood of utilization of non-lexical evidence
(P(non-LE)) can be computed through the following formula:

P non−LEð Þ ¼ 1−P LEð Þ ð7Þ

Finally, knowing the likelihoods of utilization of the two
sources of evidence for stress (i.e., lexical versus non-lexical)
and the posterior probabilities of a hypothesized stress pattern
given the lexical and non-lexical evidence for a given word,
we can estimate the combined posterior probability of a given
stress pattern for that word through the following formula:

P stress
���LE; non−LE

� �
¼ P LEð Þ*P stress

���LE
� �

þ P non−LEð Þ*P stress
���non−LE

� �

ð8Þ
To conclude, the present approach is based on two

assumptions about the sources of evidence for stress used
by readers in the process of stress assignment. The first
one is that there are two sources of evidence for stress:
lexical and non-lexical. These two sources differ in reli-
ability (with lexical evidence being more reliable) and
accessibility (with lexical evidence being more accessible
for high frequency than low frequency words). At the
same time, the two sources are used in the process of
stress assignment in essentially identical ways: i.e.,
readers rely on them in adjusting their prior beliefs in
order to establish their posterior beliefs about likelihoods
of stress patterns for items. The second assumption is that
the increase of the likelihood of utilization of lexical

evidence for some words (related to the frequency of the
word in a language) is associated with a decrease of the
impact of the non-lexical evidence for stress on stress
assignment. There is some empirical support for these
assumptions coming from prior research. It has been re-
ported in English and Italian (Colombo, 1992; Rastle &
Coltheart, 2000), for example, that readers’ performance
is impacted significantly more by non-lexical sources of
evidence for stress when readers name words of low rath-
er than high frequency. The proposed probabilistic infer-
ential view of stress assignment should be able to simulate
this interaction of lexical (frequency) and non-lexical
(e.g., consistency of orthography-to-stress mappings of
word endings) factors.

The computed estimates of posterior probabilities for stress
patterns are assumed to be reflective of the ease of stress as-
signment both in terms of speed and accuracy. Readers should
be more accurate in assigning stress to words with high com-
pared to low estimated posterior probabilities of the stress pat-
terns that these words actually have. Further, we expect that for
nonwords with high estimated posterior probabilities of a stress
pattern, there should be greater agreement among readers in
regards to the stress patterns assigned to those items compared
to nonwords with estimated posterior probabilities of stress
patterns that are near 50:50. Finally, the estimated posterior
probabilities of stress patterns should correlate with the naming
response latencies. In particular, a word with a high estimated
posterior probability of the stress pattern that the word actually
has and nonwords with a high posterior probability of a given
stress pattern should show a latency advantage.

Calculating probabilities of stress patterns

For purposes of illustration, the computations of the pos-
terior probabilities of trochaic and iambic stress patterns
for the trochaically stressed word beltik based on a cor-
pus of 30 disyllabic words of a fictitious language (see
Table 1) are described. Let’s assume that this word has a
relatively low word frequency of 5 per million words.
Hence, its Zipf score equals 3.7 (=log10 (5) + 3). Based
on the assumption of a linear relationship between the
Zipf scores in the range of 1 to 7 and corresponding
likelihoods of utilization of lexical evidence for stress
in the range of 0 to 1, the likelihood of utilization of
the lexical evidence for stress for this word with a Zipf
score of 3.7 can be computed as being equal to .45. The
likelihood of utilization of non-lexical evidence for stress
for this word then equals .55.

Based on the lexical evidence, the probability that the cor-
rect trochaic stress pattern would be assigned to this word is
1.0. The probabilities of trochaic and iambic stress patterns
given non-lexical evidence for stress are computed based on
the specific non-lexical stress cues that are present in this

Psychon Bull Rev (2015) 22:1174–1192 1179



language. Let’s say that there are three sources of non-lexical
evidence for stress in the language: the orthography of the
ending of the second syllable (i.e., the second vowel of a word
and all following consonants), the orthography of the first
syllable, and, finally, the orthography of the beginning of the
first syllable (i.e., all graphemes up to and including the vowel
of the first syllable).3 These sources of evidence are integrated
into the computation of posterior probabilities of stress pat-
terns given non-lexical evidence in the following way. First,
the prior distributions of stress patterns in this language are
considered. As 67 % of words have a trochaic stress pattern,
the prior probability that a word has trochaic stress, P(Stress1),
is .67, while the prior probability that a word has iambic stress,
P(Stress2), is .33. Next, the evidence provided in the orthog-
raphy of the word is accounted for. As the ending –ik of the
word beltik is present in 35% of words with trochaic and 20%
of words with iambic stress, the posterior probability of a word
having a trochaic stress given the presence of the ending –ik is

P Stress1
���−ik

� �
¼

P −ik
���Stress1

� �
P Stress1ð Þ

P −ik
���Stress1

� �
P Stress1ð Þ þ P −ik

���Stress2
� �

P Stress2ð Þ

¼ :35ð Þ :67ð Þ
:35ð Þ :67ð Þ þ :20ð Þ :33ð Þ ¼

:24

:31
¼ :77

ð9Þ

In the case of disyllabic words, the two stress hypotheses
are in a trade-off relationship with one another such that in-
creasing the belief in one decreases the belief for the other.
Therefore, the posterior probability of the other hypothesis
can be directly calculated:

P Stress2
���−ik

� �
¼ 1−P Stress1

���−ik
� �

¼ 1−:77 ¼ :23 ð10Þ

The evidence provided by the first syllable bel- is
present in 25 % of words with trochaic stress and
20 % of words with iambic stress. This stress cue is
used to update earlier beliefs about stress patterns that
were based on the presence of the evidence –ik in the
word. Thus, P(Stress1|-ik), referred to as P(Stress1)*,
serves as the new prior probability of a trochaic stress
pattern, while P(Stress2|− ik), referred to as P(Stress2)*,
is the new prior probability of an iambic stress pattern.
The posterior probability that the word belpik has tro-
chaic stress given the presence of bel- and -ik is calcu-
lated as follows:

P Stress1
���bel−;−et

� �

¼
P bel−

���Stress1
� �

P Stress1ð Þ*
P bel−

���Stress1
� �

P Stress1ð Þ*þ P bel−
���Stress2

� �
P Stress2ð Þ*

:25ð Þ :77ð Þ
:25ð Þ :77ð Þ þ :20ð Þ :23ð Þ ¼

:19

:24
¼ :79

ð11Þ

As the final step in the calculation, the evidence pro-
vided by the beginning be- is considered. In assessing the
likelihood of evidence provided by this orthographic
component, the calculations cannot be based simply on
the scope of representation of this component in words
with trochaic versus iambic stress due to the fact that the
beginning be- is a part of the first syllable bel- that has
already been accounted for. This issue is addressed by
considering the distribution of this component in all
words except the words that have a first syllable of bel-
(P(be-,¬bel)|Stress1) and P(be-,¬bel)|Stress2)). Out of
the words that meet that criterion, 15 % have trochaic
stress and 10 % have iambic stress. These probabilities
are used to update previous calculat ions. Thus,
P(Stress1|bel-,-ik), further referred to as P(Stress1)**,
serves as the new prior probability of trochaic stress and
P(Stress2|bel-,-ik), further referred to as P(Stress2)**, is
the new prior probability of iambic stress. Based on that,
the posterior probability that the word belpik has a

3 The three sources of evidence for stress that were used to illustrate the
computation of posterior probabilities of stress patterns in this fictitious
language were selected merely for illustration purposes and are not the
same sources that were used in the computation of posterior probabilities
of stress patterns in Russian.

Table 1 The corpus of disyllabic words of a fictitious language used to
illustrate the computation of the posterior probabilities within our
proposed Bayesian framework

Words with trochaic stress Words with iambic stress

BELTIK
BELKOP
BETNIK
BELSIK
BENSET
BELRAT
BELMOT
BERMAT
DOMRET
FAPRET
FAMLIK
KOLTIK
LIPSET
MERLIK
MOLTET
MONPIK
NERMET
NELTIT
POMLOP
TERLIP

BELTOP
BENRET
BELTET
DOLMAT
DOLTIK
DOLNOP
FAPLOP
KILPIK
LIPSOP
MERLON
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trochaic stress pattern given the evidence be-, bel-, and -
ik, is calculated as follows:

P Stress1
���be−; bel−; −ik

� �

¼
P be−

���Stress1
� �

P Stress1ð Þ**
P be−

���Stress1
� �

P Stress1ð Þ**þ P be−
���Stress2

� �
P Stress2ð Þ**

¼ :15ð Þ :79ð Þ
:15ð Þ :79ð Þ þ :10ð Þ :21ð Þ ¼

:12

:14
¼ :86

ð12Þ

Thus, based on the prior knowledge of the distribution of
stress patterns in the language and the relationships that exist
between the three types of orthographic cues and stress pat-
terns in the words of this language, the posterior probabilities
of trochaic and iambic stress patterns given non-lexical evi-
dence for stress can be computed for the word beltik.

Finally, the posterior probability of a trochaic stress pattern
given lexical and non-lexical evidence for stress for the word
beltik is computed:

P stress1
���LE; non−LE

� �
¼ P LEð Þ*P stress1

���LE
� �

þP non−LEð Þ*P stress1
���non−LE

� �

¼ :45*1:0ð Þ þ :55*:86ð Þ ¼ :45þ :47 ¼ :92

ð13Þ

Based on these calculations, one would expect that proper
stress assignment should be rapid for the word beltik and the
error rate should be quite low, potentially around 8 % in a
speeded naming situation.

The calculation of probabilities of stress patterns
does, of course, reflect the behavior of an ideal
observer, who computes the most probable stress pattern
given the whole corpus of the language. The real pat-
terns of behavior are expected to be correlated with the
patterns predicted based on the computations we have
described, but are unlikely to be identical. First of all,
although humans appear to be good statisticians, they
are not perfect, while the presented computations are
error-free. As various errors, biases, and heuristics are
common features of human cognition (Tversky &
Kahneman, 1974), departures from optimal behavior
are expected in human performance.

Another point to note here relates to the process of estima-
tion of the likelihoods. In the computation of posterior prob-
abilities of stress patterns described above, these likelihoods
were calculated online from the full lexicon. It is unlikely that
during actual reading these values would be computed anew
every time. It is more likely that being exposed to the corpus
of words has caused readers to learn likelihoods for various
recurring units in their language which can simply be used in

language processing. That is, readers have knowledge about
the likelihoods with which stress patterns are associated with
particular non-lexical orthographic cues and use this informa-
tion when deciding what syllable in a word to stress. It should
be noted, of course, that the reader’s estimate of the likelihood
of an orthographic component being associated with a given
stress pattern would be a dynamic representation that would
be constantly updated in the light of new experiences.

Stress assignment in Russian disyllables as a problem
of probabilistic inference

As noted, the language used to evaluate the idea that stress
assignment can be perceived as a problem of probabilistic
inference was Russian. The process of stress assignment ap-
pears to be complicated in this language because stress is not
explicitly marked in the orthography and it does not conform
to any clear implicit rules (see Coats, 1976; Gouskova &
Roon, 2013; Halle, 1973; Jouravlev & Lupker, 2014;
Zaliznjak, 1985 for more information about the system of
lexical stress in Russian). Prior investigations of the lexical
stress system in Russian provided the information required
for the implementation of our framework to stress assignment.
Specifically, from the analysis of the corpus of Russian disyl-
labic words (Jouravlev & Lupker, 2014), we know the distri-
butions of stress patterns in this language. These distributions
are used as the priors in the computations of the posterior
probabilities of stress patterns. In particular, the prior proba-
bility of a trochaic stress pattern in Russian (P(Stress1)) is .55,
while the prior probability of an iambic stress pattern
(P(Stress2)) is .45. Note that these prior probabilities
reflect stress pattern distributions in the Russian lan-
guage only. The priors used in the computation of pos-
terior probabilities of stress patterns in other languages
will be different (e.g., in English, P(Stress1)) = .8 and
P(Stress2)) = .2).

As is the case for the priors of stress patterns in a language,
it is also the case that non-lexical sources of evidence for stress
would differ between languages. To conclude that a certain set
of non-lexical stress cues is used in the process of stress as-
signment in a language, one needs to demonstrate that these
cues are probabilistically associated with stress patterns in that
language and that readers are sensitive to these cues. An in-
vestigation of this type has been recently conducted in
Russian (Jouravlev, 2014; Jouravlev & Lupker, submitted).
The 11 potential sources of evidence for stress that were ex-
amined were Grammatical Category, Log Frequency, Length,
Word Onset Complexity, Word Coda Complexity, and a set of
six orthographic segments. The orthographic segments were
the First Syllable (referred to as CVC1), the Beginning of the
First Syllable (CV1), the Ending of the First Syllable (VC1),
the Second Syllable (CVC2), the Beginning of the Second
Syllable (CV2), and the Ending of the Second Syllable
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(VC2). It should be noted that it is not a particular identity of
some component (e.g., B-et^ in Bmarket^), but an orthographic
component per se (e.g., VC2 in all words of the corpus) that
was considered as the source of evidence for stress in this
research (although the calculations in the present research
are based on the probabilities associated with the identities
of the particular components themselves in each word being
named). If some orthographic component is a valid source of
evidence for stress, we should observe improved stress-
assignment performance when the particular identity of that
component cues a stress pattern that is consistent with the actual
stress that a word has (e.g., if the VC2 component is a valid
source, the VC2 component B-et^, the identity of which is
associated with trochaic stress, correctly provides evidence for
trochaic stress in the word Bmarket^) and disrupted perfor-
mance if the particular identity of this component cues a stress
pattern that is inconsistent with the actual stress that a word has
(e.g., the VC2 component B-et^ incorrectly provides evidence
for trochaic stress in the word Bcadet^). Essentially, one would
expect to observe spelling-to-stress consistency effects for the
components that act as strong sources of evidence for stress.4

In the first regression study (Study 1) reported in Jouravlev
and Lupker (submitted), the predictability of stress patterns in a
corpus of disyllabic words based on a number of potential cues
was assessed. Onset complexity, coda complexity, the orthog-
raphy of the first syllable (CVC1), of the second syllable
(CVC2), and of the ending of the second syllable (VC2) were
found to be probabilistically associated with stress in the corpus
of Russian disyllabic words. In addition to examining relation-
ships existing in this normative corpus, real language use was
investigated as well due to the fact that it might deviate signif-
icantly from the stress information reflected in the dictionaries.
In their second study, Jouravlev and Lupker ran a set of regres-
sion analyses assessing the effects of the same eleven potential
sources of evidence for stress on the naming latencies and
stress-assignment accuracy data for a large number of disyllabic
words named by native speakers of Russian. The results

showed that only three of the eleven cues (CVC1, CVC2, and
VC2) were predictive of the behavioral data. Finally, in order to
validate these three sources of evidence for stress identified in
the regression studies, these sources were examined again in a
study employing a factorial design. Those results corroborated
the finding that Russian speakers do use the orthography of
CVC1, CVC2, and VC2 when assigning stress. To conclude,
there appear to be three predominant non-lexical sources of
evidence that are probabilistically associated with stress pat-
terns in Russian and are used by speakers of that language:
the orthography of the first syllable (CVC1), of the second
syllable (CVC2), and of the ending of the second syllable
(VC2). These three sources of evidence for stress were used
in the computation of posterior probabilities of stress given
non-lexical evidence in the present analyses.5

The orthographic segments CVC2 and VC2 are not
completely independent from each other as one is a part of
the other. Thus, when we account for evidence provided by
CVC2, we also account for some, but not all, evidence that
VC2 provides. This issue was addressed in the way that was
already described earlier in the example from the fictitious
language. In particular, we considered the distribution of spe-
cific instances of the VC2 cue (e.g., VC2 B-онт^ present in the
word Bремонт^ for which posterior probabilities of stress pat-
terns are computed) in all words except the words that have
the same CVC2 as the word of interest (e.g., all words that
have VC2 Bонт^, but do not have CVC2 Bмонт^).

The computations of the likelihood of evidence based on
these three orthographic components were derived from the
lexicon of 13,942 Russian disyllabic words. It should be noted
that only the words with a frequency of more than one per
million were included in this corpus. Further, only nouns that
describe a class of entities (i.e., common nouns), but not
unique entities (i.e., proper nouns), are in this corpus. Thus,
the corpus that was used for these calculations did not include
all disyllabic words in the Russian language. The fact that the
corpus used was not exhaustive might lead to a slight distor-
tion in the computation of the likelihoods of evidence.
Although this limitation should not change the predictions to
any noticeable degree in the majority of cases, it might matter
when certain orthographic patterns are very low in frequency
in the language overall and, therefore, those patterns are not
well represented in the selected corpus. For example, in the
corpus, there is just one word мольберт that has the

4 Both type and token spelling-to-stress consistency measures were ana-
lyzed by Jouravlev and Lupker (submitted). Words sharing an orthographic
component under consideration were defined as the words in the target’s
neighborhood. In calculating the type consistency measure, the proportion
of words with trochaic stress in the neighborhood was calculated by divid-
ing the number of words in the neighborhood having trochaic stress by the
total number of words in the neighborhood. High values meant that in the
specified orthographic neighborhood the number of words with trochaic
stress is higher than the number of words with iambic stress, while low
values meant that there are more words with iambic than trochaic stress in
the neighborhood. Values near .50 indicate that the neighborhood has ap-
proximately equal percentages of the two stress types (i.e., it is an incon-
sistent neighborhood). Token consistency measures, corresponding to the
summed frequency of words with trochaic stress in an orthographic neigh-
borhood divided by the summed frequency of all words in that orthographic
neighborhood, were calculated in a similar fashion.

5 Although the orthography of CVC1, CVC2, and VC2 were identified as
sources of evidence for stress with high utility and validity in Russian
(and are used in the computation of the posterior probabilities of assigning
stress in Russian disyllables in the present paper), there is no reason to
believe that the set of non-lexical sources of evidence for stress will be the
same in other languages nor is there reason to believe that no other non-
lexical sources of evidence for stress are ever used by Russian readers.

1182 Psychon Bull Rev (2015) 22:1174–1192



orthographic component –берт (CVC2) and it has an iambic
stress. Thus, in calculating the posterior probability of a tro-
chaic stress for this word based on the information provided
by CVC2, the prediction is that there is no chance that this
word would be assigned a trochaic stress pattern:

P(Stress1|−берm)

¼ 0=7668ð Þ � :55

0=7668ð Þ � :55ð Þ þ 1=6274ð Þ � :45ð Þ ¼ :00 ð14Þ

This situation likely will not create a problem when the
proposed computational approach is assessed on its ability to
predict a stress pattern for the single word мольбЕрт that is a
part of the selected lexicon; however, it can become a problem
if the approach is assessed on its ability to predict a stress
pattern for another word with the orthographic component
–берт (CVC2) that is not a part of the selected corpus and
that has a trochaic stress pattern (e.g., the proper name
шУберт). The issue of a distortion in the representation of
evidence in the corpus due to having a frequency cutoff is less
problematic when that evidence is represented widely in the
language. In that situation, even if a few words having a par-
ticular orthographic component did not make it into the corpus
due to their very low frequency, the relative strength of the
evidence based on that component for the two alternative hy-
potheses should not depart greatly from the distribution pres-
ent in the language.

The issue of incorrect calculations of posterior proba-
bilities due to the underrepresentation of certain ortho-
graphic patterns in the corpus was addressed in the fol-
lowing way. To reflect the possibility that there might be a
word present in the language that has a certain ortho-
graphic pattern, but that simply did not make it into the
corpus, one instance was added in the calculations of
likelihoods of evidence of both trochaic stress and iambic
stress.6 That is, in calculating the posterior probability of
a trochaic stress given –берт (СVC2), the counts for tro-
chaic versus iambic stress were not 0 and 1 (meaning that
in the lexicon, 0 words with that orthographic pattern
have trochaic stress and 1 word with that pattern has iam-
bic stress), but rather 1 and 2 (meaning that there is po-
tentially 1 word with that pattern that has trochaic stress

and 2 words with that pattern that have iambic stress).
Following this way of estimating the likelihood of evi-
dence, the posterior probability of a trochaic stress giv-
en the evidence –берт (CVC2) is:

P(Stress1|−берm)

¼ 1=7668ð Þ � :55

1=7668ð Þ � :55ð Þ þ 2=6274ð Þ � :45ð Þ ¼ :33 ð15Þ

The inclusion of a parameter reflecting the possibility that
there might be other words with the same stress patterns that
were simply not included in the corpus allows for more rea-
sonable estimates of probabilities of stress patterns not just for
words like мольбЕрт, but also for words like шУберт as
well as nonwords containing the orthographic pattern in
question.

This slight transformation of the likelihoods of evidence for
stress by adding one Bpotentially possible^ item with trochaic
stress and one with iambic stress also allows for the compu-
tation of posterior probabilities of stress patterns for nonwords
with some non-extant components. For example, the Russian
nonword блинбиж has two components that are present in
Russian (CVC1 блин- and VC2 -иж) and one component that
does not appear in words of the Russian language (CVC2
-биж). We assume that there is potentially one trochaically
stressed word and one iambically stressed word in Russian
that have the non-extant component -биж. Based on this as-
sumption the posterior probabilities of stress patterns given
this non-extant component can be computed:

P(Stress1|−биж)

¼ 1=7668ð Þ � :55

1=7668ð Þ � :55ð Þ þ 1=6274ð Þ � :45ð Þ ¼ :50 ð16Þ

As can be seen here, the impact of non-extant orthographic
components on the posterior probabilities of stress patterns is
minimal, which is probably a correct reflection of the absence
of formed associations between any non-extant orthographic
components and stress patterns in the language. Therefore, the
estimated posterior probabilities of stress patterns would
mainly rely on the likelihoods of evidence based on those
orthographic components that are present in the language
(e.g., CVC1 блин- and VC2 –иж for the nonword
блинбиж). Based on the set of assumptions described above,
the estimates of stress pattern probabilities can now be com-
pared with actual stress pattern assignment of readers of
Russian naming disyllabic words (Experiment 1) and non-
words (Experiment 2).

6 The strategy of adjusting the likelihoods of evidence given stress pat-
terns by adding one potential exemplar to the computation was applied in
all cases. For instance, if a certain component was present in five words
with trochaic and two words with iambic stress patterns, the count used
for the trochaic stress pattern was 6 (=5 + 1), while the count used for the
iambic stress pattern was 3 (=2 + 1).
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Experiment 1: Word naming task

The goal of Experiment 1 was to assess whether the computed
posterior probabilities of stress patterns are predictive of stress
assignment performance and of response latencies of native
speakers of Russian naming disyllabic words. In most of the
prior computational studies of the process of stress assignment
(Rastle & Coltheart, 2000; Ševa et al., 2009; Perry et al.,
2010), the authors compared the stress pattern predictions of
their models with the stress patterns that disyllabic words have
in the language rather than actual stress assignment perfor-
mance of readers on those words. The reason that this ap-
proach was used was either that these models are unable to
simulate stress assignment probabilities across individuals due
to the fact that their output is deterministic (i.e., trochaic or
iambic stress patterns) rather than probabilistic (Rastle &
Coltheart, 2000), or because the modelers (Perry et al., 2010;
Ševa et al. 2009) preferred to transform their continuous prob-
ability values (e.g., activation levels for the various stress pat-
terns in the model) into binary stress outputs (with the stress
pattern node achieving the highest level of activation being
considered as determining the stress pattern that the model
would assign to a word). In either situation, it was, therefore,
these binary outputs that were then compared against stress
patterns in the relevant corpus.

Our main analysis is somewhat different than in the previ-
ous literature. Our aim was to compare the predicted proba-
bilities of stress assignment against the actual probabilities of
speakers producing the various stress patterns. This process of
comparing the predicted probabilities of stress patterns with
actual stress assignment performance is a novel and, presum-
ably, more diagnostic way of evaluating the computational
principles of stress assignment as well as the theoretical ideas
underlying those principles. Further, we also assessed whether
the speed of naming is related to the predicted probabilities of
the most frequently produced stress pattern as our framework
also speaks to that issue. Nonetheless, for purposes of com-
parison to the previous literature, we also analyzed stress pat-
tern predictions by creating binary outputs (i.e., we report a
binary classification analysis). However, the binary output
predictions were compared not against the stress patterns
listed in a dictionary but rather against the more frequent
(binary) stress assignments produced by our participants (for
about 2% of our words participants produced a different stress
pattern than that listed in the dictionary) .

Method

Participants

Thirty-four undergraduate students (age 17–23 years;M = 19)
from Altay State University (Barnaul, Russia) took part in this
experiment for a small (approximately $5 US) monetary

remuneration. All were native speakers of Russian. None of
the participants reported high proficiency in any second lan-
guage. The same group of participants was used in prior stud-
ies aimed at identifying the sources of evidence for stress
(Jouravlev & Lupker, submitted).

Materials

A set of 500 disyllabic words was randomly selected from the
corpus of Russian disyllabic words. None of these items were
used in the experiments of Jouravlev and Lupker (submitted)
in which the three non-lexical sources of evidence for stress
were identified. The words were selected so that the distribu-
tion of stress patterns and grammatical categories in this set of
experimental items was similar to that in the Russian lan-
guage. There were thirty-four words that had ambiguous stress
(also known as minimal stress pairs) because they
corresponded to two lexical items that differed in stress pattern
only (e.g., пАром – Instrumental case for Bsteam^ vs. парОм
– Nominative case for Bferry^). For each of these words, the
stress pattern for the more frequent word of the pair was cho-
sen as the stress pattern that should be assigned when stress
assignment is based on lexical evidence.

Procedure

The behavioral data against which the simulation results were
compared was collected in the following way. Participants
were instructed to read aloud words presented on the screen
as quickly and as accurately as possible. Instructions and stim-
uli were presented using the DMDX display system (Forster
& Forster, 2003). The list of 500 items was presented in two
blocks of trials. Every participant named all 500 items. The
order of blocks and of items within blocks was randomized for
each participant. Each trial started with the presentation of a
fixation point for 500 ms. The target word in upper-case ap-
peared in white on a black background (Courier New, 12-
point font) for 2,000 ms or until the participant responded.
The intertrial interval was 1,000 ms. Responses were marked
using CheckVocal (Protopapas, 2007) by the first author and
by two other native speakers of Russian. The predicted poste-
rior probabilities of trochaic and iambic stress patterns were
computed for each word using the method described above.

Results

Analysis of stress pattern assignment

In our main analysis, we evaluated the actual posterior prob-
ability predictions, specifically, whether there is the predicted
relationship between the posterior probabilities of stress pat-
terns generated by our calculations and the stress assignment
probabilities demonstrated by the participants (see Fig. 2A for
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the scatterplot of predicted and assigned stress patterns). For
this analysis, the computed posterior probability of an iambic
stress pattern was correlated with the proportion of responses
with iambic stress that ranged from 0 (meaning that all partic-
ipants named a word with a trochaic stress pattern) to 1 (mean-
ing that all participants named a word with an iambic stress
pattern). This analysis showed that the posterior probabilities
of iambic stress patterns were predictive of the likelihood that
the readers would pronounce those words with iambic stress, r
(498) =.94, F (1,498) = 3960.17, p < .001.7

For purposes of the more traditional, binary classification
analysis, a posterior probability of a stress pattern that exceeded
.50 was interpreted as the prediction that that word has that
stress pattern. These predictions were compared against the
stress patterns produced by the participants. If a stress pattern
produced by the participants for a given word was produced
more than 50 % of the time, the word was assumed to have that

stress pattern. Interestingly, of the 500 words, five words were
assigned the two stress patterns by participants equally often,
while eight were assigned the incorrect stress pattern more fre-
quently than the correct pattern.8 Therefore the present classifi-
cation analysis is slightly different than the analysis typically
used in the literature in which the model’s predictions are com-
pared against the stress patterns listed in a dictionary. In the
classification analysis, the stress patterns in 96 % of the ana-
lyzed words were predicted correctly, with no difference in the
accuracy of predictions for the trochaically versus iambically
stressed words (see Table 2A for the distribution of human
stress pattern classification and computed stress pattern predic-
tions). This level of predictive success was highly significant:
(493) =.93, χ2 (493) = 424.90, p < .001. Thus, on the basis of
the criterion commonly used to evaluate models of stress as-
signment in the literature, our predictions were quite good.9

Analysis of response latencies

Response latencies for words that were assigned the expected
stress pattern were analyzed using a linear mixed effects logistic
regression model. In this model, Subjects and Items were en-
tered as crossed random factors, while estimated Posterior
Probability of trochaic (for trochaically stressed words) or iam-
bic (for iambically stressed words) stress patterns, Log
Frequency, Length, Onset Complexity, and Characteristics of
the First Phoneme were entered as fixed factors. The effect of
the estimated Posterior Probability on naming response laten-
cies is of primary theoretical interest in this analysis. The other
predictor variables, all of which have been previously shown to
impact the speed of word naming in Russian (Jouravlev,
2014; Jouravlev & Lupker, submitted), were included to re-
move any variance associated with them. The analysis was
conducted using the R package lme4 (Bates & Maechler,
2010). The results showed that the following variables were
significant predictors of response latencies: Posterior
Probability (t (16378) = -4.67, p < .001), Log Frequency (t
(16378) = -8.30, p < .001), Length (t (1286) = 2.79, p = .05),
and Onset Complexity (t (1286) = 3.31, p = .01). Most impor-
tantly, the Posterior Probability factor was strongly and nega-
tively related to readers’ speed of naming. Higher predicted
posterior probabilities of the correct stress pattern were associ-
ated with shorter latencies.10

7 The predicted posterior probabilities of iambic stress patterns and like-
lihoods that that stress pattern was assigned by readers were also strongly
correlated in the analysis that did not contain the minimal stress pair
words, r (464) = .88, F (1,464) = 1688.81, p < .001.

Fig. 2 Scatterplots of predicted posterior probabilities of iambic stress
patterns in relation to the proportion of iambic stress patterns being
assigned by participants naming (A) the words of Experiment 1 and (B)
the nonwords of Experiment 2

8 The five words that were assigned the two stress patterns equally often
were not included in the classification analysis.
9 The exclusion of minimal stress pair words from the analysis did not
change the results with stress patterns being predicted correctly for 97 %
of the remaining words: (460) = .94, χ2 (460) = 410.22, p < .001.
10 The interaction of the Frequency and Posterior Probability factors was
not entered into this analysis as the computation of posterior probabilities,
in particular of the likelihood of utilization of lexical evidence for stress,
already incorporates word frequency information.
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Experiment 2: Nonword naming task

Simulating performance of readers on nonwords, in particular
their decisions in assigning stress patterns, is generally consid-
ered the gold standard in validating theories and computational
models of reading and stress assignment (Perry et al., 2010).
One of the challenges in this task is that stress assignment in
nonword naming is characterized by great inter-subject vari-
ance (Zevin & Joanisse, 2000). All existing models of stress
assignment have been previously tested by their modelers on
their ability to predict stress pattern placement in nonword
naming; however, as noted above, because models produce
(or the researchers reported only) binary, deterministic output
(trochaic or iambic stress patterns), they would be unable to
account for any of this variability. That is, the three most well-
known models of stress assignment only predict the most fre-
quent stress pattern that participants assign to a nonword, rath-
er than the ratio of responses with trochaic versus iambic stress
patterns assigned to that nonword. In contrast, the computa-
tional implementation of the stress assignment process that is
being presented here can provide predictions of the distribu-
tion of trochaic and iambic responses that speakers should
produce in naming nonwords as well as the most frequent
response to each nonword that should be given by participants
and its latency. The aim of Experiment 2 was to assess whether
estimated posterior probabilities of stress patterns were corre-
lated with the actual stress assignment performance and re-
sponse latencies of readers naming nonwords.

Method

Participants

Thirty undergraduate students (age 17–23 years;M = 19) from
Altay State University (Barnaul, Russia) took part in this ex-
periment for a small (approximately $5 US) monetary

remuneration. All were native speakers of Russian. None of
the participants reported high proficiency in any second
language.

Materials

A set of 200 disyllabic nonwords was created by randomly
combining first syllables and second syllables of Russian di-
syllabic words. Syllables were combined in such a way that no
real words or pseudohomophones were created. All nonwords
were pronounceable and did not violate any ortho-
phonological constraints present in Russian. To minimize the
possibility that stress assignment is completed by analogy to a
real word, no nonword that is an orthographic neighbor of a
real word (Coltheart, Davelaar, Jonasson, & Besner, 1977)
was included as a stimulus in this experiment.

Procedure

The behavioral data against which the simulation results were
compared were collected in the following way. Participants
were instructed to read aloud novel words that would be pre-
sented on the screen. Instructions and stimuli were presented
using the DMDX display system (Forster & Forster, 2003).
The list of 200 items was presented in two blocks of trials.
Every participant named all 200 items. The order of blocks
and of items within blocks was randomized for each partici-
pant. Each trial started with the presentation of a fixation point
for 500 ms. The target nonword in upper-case appeared in
white on a black background (Courier New, 12 font) for
2000 ms or until the participant responded. The intertrial in-
terval was 1000 ms. Responses were marked using
CheckVocal (Protopapas, 2007) by the first author and by
two other native speakers of Russian. The predicted posterior
probabilities of trochaic and iambic stress patterns were com-
puted for each word using the technique described above.

Results

Analysis of stress pattern assignment

As before, the correlational analysis is taken to be a better
means of evaluating the predictions derived from our frame-
work. Those predictions, in the form of posterior probabilities
of an iambic stress pattern, were correlated with the ratio of
iambic stress responses made by participants to the nonwords
(see Fig. 2B for the scatterplot of predicted and assigned stress
patterns). The results showed that the estimations of posterior
probabilities of stress patterns computed were quite reflective
of actual performance, r (198) = .87, F (1, 198) = 600.35, p <
.001.

As with the words, a conventional classification analysis of
stress assignment was undertaken. Again, for purposes of the

Table 2 Contingency tables showing the distribution of human stress
pattern classification and computed stress pattern predictions in (A) the
words of Experiment 1 (N=495) and (B) the nonwords of Experiment 2
(N=195)

Predicted Stress

Assigned Stress Trochaic Iambic Total

A. Words

Trochaic 268 9 277

Iambic 10 208 218

Total 278 218

B. Nonwords

Trochaic 64 9 73

Iambic 15 107 122

Total 79 116
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classification analysis, a posterior probability of a stress pat-
tern that exceeded .50 was interpreted as meaning that that
pattern was the Bcorrect^ pattern for that nonword. In the
classification analysis, correct predictions about the stress pat-
tern that is more likely to be realized by participants were
made for 176 out of the 200 nonwords (88 % correct): ɸ
(198) = .75, χ2 (198) = 112.69, p < .001. For both trochaically
and iambically stressed nonwords, the accuracy of prediction
reached 88 % (see Table 2B for the distribution of human
stress pattern classification and computed stress pattern
predictions).

Analysis of response latencies

Response latencies were analyzed using a linear mixed
effects logistic regression model. In this model, Subjects
and Items were entered as crossed random factors.
Length, Onset Complexity, and Characteristics of the
First Phoneme were fixed factors that were of no theo-
retical interest in this analysis and were included to re-
move any variance associated with them. The variable of
interest was the estimated Posterior Probability of that
stress pattern (trochaic or iambic) for which this estimate
was higher than that for the other stress pattern. For
example, if the estimated posterior probability of a tro-
chaic stress pattern was greater than that of an iambic
stress pattern for a given nonword, the posterior proba-
bility of trochaic stress pattern was used in the analysis
of the naming latencies of that nonword when it was
named with a trochaic stress. Higher values for the
Posterior Probability variable meant that stronger predic-
tions about the likelihood of either a trochaic or an iam-
bic stress pattern are made which should translate into
more rapid naming. The analysis was conducted using
the R package lme4 (Bates & Maechler, 2010). The re-
sults showed that only the Posterior Probability variable
was significantly (and negatively) related to response la-
tencies: t (5964) = -2.16, p = .03. Thus, participants were
faster to name those nonwords for which the posterior
probabilities of trochaic or iambic stress patterns were
high than those nonwords for which the computed pos-
terior probabilities of trochaic or iambic stress patterns
were nearly equal.

General discussion

In this paper, we proposed and evaluated the idea that the
human mind might be approaching the task of stress assign-
ment as a problem of probabilistic inference, i.e., in assigning
stress, readers evaluate the likelihood of potential stress pat-
terns when making a stress assignment decision. The process
is assumed to be accomplished by considering prior

probabilities of stress patterns in a language and the evidence
for each stress pattern provided in the stimulus being named.
The prior probabilities of stress patterns in a language used by
a speaker are assumed to reasonably accurately reflect the
frequency of those stress patterns in the language. The evi-
dence for stress involves any type of information present in
stimulus that is probabilistically associated with stress patterns
in the language (i.e., has high validity) and that speakers use in
making their stress assignment decisions (i.e., has high utili-
ty). We posit that stress assignment may be completed based
on two sources of evidence for stress: lexical and non-lexical.
Lexical evidence corresponds to stress pattern information
retrieved by a reader from the mental lexical representation
of a word. This evidence has perfect validity and utility (i.e.,
each word is generally associated just with one stress pattern
and readers would be expected to know what that stress pat-
tern is). Non-lexical evidence for stress corresponds to stress
cues present in the orthography of items. The likelihood of
utilization of lexical versus non-lexical sources of evidence for
stress in the process of stress assignment will depend on the
ease of lexical access for a particular item. For items that do
have lexical representations (i.e., words), but for which lexical
access is relatively effortful and slow (low frequency words)
stress assignment will be more likely to be based on non-
lexical rather than lexical evidence. In contrast, readers are
expected to use mainly lexical, rather than non-lexical, evi-
dence for stress in processing items for which lexical access is
relatively effortless and fast (high frequency words). Readers
will assign stress to items for which there is no lexical repre-
sentation (i.e., nonwords) based on non-lexical evidence only.

The role of the overall frequency of a particular stress pat-
tern in a language in the process of stress assignment is an
object of significant debate. One view is that readers assign the
most frequent stress pattern by default and, thus, that there is
an essential difference in the processing of words with more
frequent versus less frequent stress patterns (i.e., stress pat-
terns are computed by readers based on some stress cues only
for words with less frequent stress patterns; Black & Byng,
1986; Colombo, 1992). The polar opposite view is that the
frequency of stress patterns plays no role in processing at all
and, hence, the mechanisms of processing words with a more
frequent stress pattern are exactly the same as those for words
with a less frequent stress pattern (Burani & Arduino, 2004;
Sulpizio, Arduino, Paizi, & Burani, 2013). We take an inter-
mediate position: Knowledge of the overall distribution of
stress patterns in a language is used to create a prior belief
about the likelihood with which words will have a particular
stress pattern or, in other words, as a baseline for further com-
putations of probabilities of stress patterns. Thus, in the pro-
posed probabilistic inferential framework, there are no differ-
ences in the mechanisms of processing of words with the more
frequent versus the less frequent stress pattern, althoughwords
with a more frequent stress pattern do enjoy somewhat of a
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head start. However, this initial situation can be easily
changed if the word contains a number of orthographic cues
that are probabilistically associated with the less frequent
stress pattern.

The analysis being offered here is, therefore, based on the
idea that non-lexical sources of evidence for stress (or Bstress
cues^) play a vital role in assigning stress. Previously, a wide
range of potential non-lexical stress cues has been suggested,
including graphemic complexity of onsets and codas (Kelly,
2004; Kelly, Morris, & Verrekia, 1998), orthography of word
beginnings and endings (Arciuli et al., 2010), grammatical
status of a word (Arciuli & Cupples, 2006), etc. In making
stress assignment decisions, readers may evaluate many
sources of evidence for stress present in their language.
However, due to time constraints and due to the excessive
amount of evidence for stress patterns, some of which is re-
dundant, readers, in general, are likely to rely on a limited set
of highly informative stress cues. Doing so would allow
readers to assign stress with high accuracy and speed in the
majority of cases.

The idea proposed here, that stress assignment can be
thought of as a problem of probabilistic inference, can be
applied to any language that utilizes lexical stress. The exact
prior probabilities and sources of evidence for stress would, of
course, be language-specific. In this paper, the idea that
readers consider prior probabilities of stress patterns and var-
ious sources of evidence for stress when assigning stress to an
item and the probable computational implementation of this
idea have been tested against stress assignment performance
of native speakers of Russian who were naming disyllabic
words and nonwords. The choice of Russian for the present
research is explained by the fact that despite the importance of
lexical stress for word recognition in Russian, its assignment
is very complex and is often a source of speech errors. Further,
prior research on the lexical stress system in Russian
(Jouravlev & Lupker, 2014; Jouravlev & Lupker, submitted)
provides us with information about the distribution of stress
patterns in that language (i.e., prior probabilities of stress pat-
terns) and the nature of the cues that are probabilistically as-
sociated with stress patterns (i.e., sources of evidence for
stress) that are needed for the computational implementation
of the probabilistic inferential approach to stress assignment
examined in the present paper. Thus, we know that in Russian
the prior probability of a trochaic stress pattern is .55, while
the prior probability of an iambic stress pattern is .45.
Jouravlev and Lupker’s (submitted) empirical investigations
also demonstrated that there are three reliable non-lexical
stress cues in Russian: the orthography of the first syllable
(CVC1), of the second syllable (CVC2), and of the ending
of the second syllable (VC2).

In Experiment 1, the computed posterior probabilities of
stress patterns for a set of Russian disyllabic words were com-
pared with the words’ assigned stress and with stress

assignment probabilities and response latencies of native
speakers of Russian naming these words. The results showed
that the computed probabilities of stress patterns were predic-
tive of the most common stress patterns for the majority of the
words tested and also of the probabilities of stress assignments
demonstrated by the readers. In addition, there was a strong
relationship between the computed posterior probabilities of
stress patterns and response latencies. More specifically,
words for which the posterior probability of the correct stress
pattern was around 50:50 were not only often assigned the
incorrect stress pattern, they also had longer response
latencies.

The aim of Experiment 2 was to assess whether the poste-
rior probabilities of stress patterns computed for Russian di-
syllables according to the technique described in this paper
correlate with stress patterns that speakers of Russian assign
to nonwords and the speed with which they named those non-
words. Once again, the technique produced good predictions.
The posterior probabilities were reflective of the relative ratio
of trochaic versus iambic responses given by the participants.
Further, readers’ response latencies to nonwords for which the
computed posterior probabilities of either a trochaic or an
iambic stress patterns were not high were longer in compari-
son to nonwords for which the posterior probability of one of
the two alternative stress patterns was high.

Theoretical implications

According to the view proposed here, the process of stress
assignment is a problem of probabilistic inference in which
readers consider estimates of the probabilities of alternative
stress patterns for each item. These estimates are computed
based either on lexical or non-lexical evidence for stress pro-
vided by information concerning the item being named. Thus,
similar to the dual-route theory of reading (Coltheart, Rastle,
Perry, Langdon, & Ziegler, 2001), to the stress assignment
algorithm by Rastle and Coltheart (2000), and to the CDP++
(Perry et al., 2010), this proposal does distinguish between the
effects of lexical and non-lexical information on the stress
assignment process; however, these two sources of informa-
tion are not conceived of as two separate routes that reflect
essentially different cognitive mechanisms of reading (e.g.,
retrieved vs. computed phonology), but rather as two different
sources of evidence for stress that are used by the same cog-
nitive mechanism.

Another important difference between the present approach
and the mechanisms of stress assignment implemented within
the CDP++ model is the usage of knowledge of prior proba-
bilities of stress patterns. In the present approach, this distri-
butional knowledge is used as a baseline reflecting a prior
belief about the likelihood that a word has a particular stress
pattern. In the CDP++ model and in connectionist models in
general, no baseline differences are assumed. Is the
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knowledge of prior probabilities a required component in our
framework? How sensitive are the posterior predicted proba-
bilities of stress patterns to variations in the priors? To get
some insight into this issue, we compared the predictions of
stress assignment against performance of native readers of
Russian on the words and nonwords used in Experiments 1
and 2 as the priors used in the calculations were varied. As can
be seen in Fig. 3, the estimated predictions that were based on
the correct prior probabilities of stress patterns (.55 and .45) fit
the behavioral data best. The goodness of fit of predictions
with different priors depended on the degree of difference.
Slight differences in prior probabilities (by ±.20) did not have
a dramatic impact on the goodness of fit, while significant
differences (by more than ±.20) resulted in a substantial drop
in the ability of our framework to predict the data. This pattern
suggests that the notion of prior probabilities of stress patterns
is an important construct and that readers are sensitive to this
knowledge. However, very precise estimations of priors do
not appear to be essential. The behavioral patterns observed
here would follow even if priors were somewhat inaccurately
estimated by our participants (i.e., even if their probability
learning process was less than perfect).

A more fundamental point of divergence between the ap-
proach to stress assignment described in the present paper and
any connectionist view is the number of required non-lexical
sources of evidence for stress that is assumed to be considered
in the process of stress pattern computation. More specifically,
in our framework, quite accurate predictions of stress patterns
can be achieved using only a limited number of non-lexical
sources of evidence for stress. That is, the posterior

probabilities of stress patterns that were highly predictive of
actual performance in Experiments 1 and 2 were computed
based on three non-lexical sources of evidence for stress
(CVC1, CVC2, and VC2). To assess whether all three sources
of evidence for stress are, indeed, needed to achieve accurate
predictions of stress pattern assignments, posterior probabili-
ties of stress patterns for the words used in Experiment 1 and
the nonwords used in Experiment 2 were calculated given (a)
only what appears to be the most potent non-lexical cue
(CVC1) (Jouravlev & Lupker, submitted), (b) what appear
to be the two most potent non-lexical cues (CVC1 and
CVC2), and, finally, (c) all three non-lexical cues (CVC1,
CVC2, and VC2). The comparison of the three sets of poste-
rior probabilities with the actual performance of readers
showed that the posterior probabilities of stress patterns with
all three sources of evidence for stress provides a better fit to
the behavioral data than did posterior probabilities based on
the other two sets of cues examined (see Fig. 4).

One additional theoretical point to make is that the frame-
work we have proposed here does not offer a specific process-
ing mechanism for turning calculated probabilities into out-
puts. What mechanism would allow a word with a predicted
probability of trochaic stress of .90 to be assigned trochaic
stress more frequently than a word with a predicted probabil-
ity of .70 with neither word being assigned the same (i.e.,
trochaic) stress in every instance? In fact, there would seem
to be a number of such mechanisms in the literature (e.g.,
mechanisms that are based on the principles of Luce’s
(1950) choice axiom) that might allow this goal to be accom-
plished. Similarly, one could propose that the mechanism is
essentially a random walk process, as in Ratcliff, Gómez and
McKoon’s (2004) Diffusion model, with higher posterior
probabilities producing higher drift rates. Future research

Fig. 4 Goodness of fit of predicted posterior probabilities of stress
patterns with different sets of sources of evidence for stress entered into
the computations: CVC1 only, CVC1 and CVC2, and CVC1, CVC2, and
VC2. The predictions are compared to the behavioral performance of
readers’ assigning stress to words (diagonal lines) and nonwords (solid
fill). The predicted posterior probabilities of stress patterns based on all
three sources of evidence for stress (CVC1, CVC2, and VC2) provide the
best fit to the data

Fig. 3 Goodness of fit of predicted of probabilities of stress patterns with
different prior probabilities entered into the computations. The
predictions are compared to the behavioral performance of readers’
assigning stress to words (striped line) and nonwords (solid line). The
predicted probabilities with correct priors (.55 probability of trochaic
stress and .45 probability of iambic stress) essentially provide the best
fit to the data
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should help to clarify which type of mechanism best reflects
the process of selecting a stress assignment.

To conclude, although the probabilistic inferential ap-
proach to the process of stress assignment does share some
theoretical assumptions with a number of existing models of
stress assignment and polysyllabic reading, it is a novel com-
putational and theoretical approach that appears to be able to
provide new insights into the process of stress assignment in,
potentially, a variety of languages.

Limitations and future research

In this paper, we have demonstrated that the process of stress
assignment in Russian disyllabic words can be conceived of as
a problem of probabilistic inference making. This line of re-
search can be further extended in a number of ways. The first
logical step would be to test this theoretical idea and its com-
putational implementation against stress assignment perfor-
mance in languages other than Russian. It would be of partic-
ular interest to examine whether this framework can be ap-
plied to stress assignment in English and Italian, languages for
which researchers have amassed an extensive amount of ex-
perimental evidence regarding the process of stress assign-
ment and for which several models of stress assignment, built
on theoretical grounds quite different from the one proposed
here, exist.

The framework proposed here should also be tested on its
ability to predict stress for polysyllables of various syllabic
lengths. It is an open question whether the simulations of
stress assignment performance of speakers naming items of
more than two syllables would be as successful as that for
disyllabic words and nonwords. Although the cornerstone
computational principles would remain the same regardless
of the syllabic length of an item, there would be some minor
differences in how the process was envisioned. First, there
would be differences in the number of hypotheses (stress pat-
terns) for which posterior probabilities must be computed.
Second, one would need to determine whether the sources of
evidence for stress remain the same for items of various syl-
labic lengths or whether different cues to stress (dependent on
the syllabic length of a word) are involved.

Another question concerns the relative time period during
which stress pattern information is being processed and the
potential interaction of segmental and suprasegmental phono-
logical processing during reading. Although there is some
behavioral evidence suggesting that the two phonological pro-
cesses are distinct and might be selectively impaired in readers
(Aichert & Ziegler, 2004), in some languages, segmental and
suprasegmental units appear to be perfectly correlated (e.g., in
English, the reduced phoneme schwa appears in unstressed
syllables only) and, therefore, readers might be using segmen-
tal phonological information (like the presence of schwa) to
assign stress patterns. Doing so would only be possible if the

output of segmental phonological processing is available to
the processing system before readers start assigning stress to
words. Indeed, logically, the mapping of orthography onto
phonology should precede the process of stress pattern iden-
tification. If segmental phonological processing truly precedes
suprasegmental phonological processing in reading, then,
within the described probabilistic inferential framework of
stress assignment, we may need to consider not only ortho-
graphic but also segmental phonological sources of evidence
for stress. However, for the moment, we have not considered
segmental phonology to be one of the sources of evidence for
stress (in Russian) as the relative time-frame of activation of
segmental verses suprasegmental phonology is still a matter of
empirical investigation.

An additional issue that has not been investigated in the
present research is whether the proposed framework can sim-
ulate individual differences in stress assignment performance.
These differences are likely to emerge because individuals
might be exposed to different statistical probabilities (both
prior probabilities and likelihoods of evidence given stress
patterns) even in the same language environment due to var-
iability in the contents and sizes of individuals’ lexicons.
Based on our analysis of the effect of altering prior probabil-
ities, it would be expected that any individual differences in
stress assignment would mainly be driven by variability in
likelihoods of evidence given stress patterns rather than by
differences in the knowledge of prior probabilities of stress
patterns in a language as very precise estimates of priors seem
not to be required for good stress assignment behavior. On the
other hand, it is possible that seemingly minor differences in
individual lexicons might lead to significant differences in
estimated likelihoods of evidence given stress patterns.

The idea is simply that due to differences in exposure and
corresponding differences in likelihoods of evidence and, pos-
sibly to some degree, in prior probabilities, the stress assign-
ment performance of, for example, a highly educated person
might be somewhat different from the performance of a per-
son with an impoverished lexicon. Similarly, the statistical
probabilities of the lexicon of a 6-year-old child might differ
significantly from those of an adult. In fact, Arciuli et al.
(2010) analyzed a corpus of children’s literature appropriate
for various age groups, and demonstrated successive changes
in the distributions of stress patterns (prior probabilities) and
in reliable stress cues (likelihoods of evidence) that were pick-
ed up by children of different ages. By learning the language,
children adapted their predictions to more closely reflect the
actual structure of the language.

Conclusions

In the present paper, we attempted to conceptualize the pro-
cess of stress assignment within the framework of probabilis-
tic inference making. In particular, stress assignment was
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viewed as the process of estimation of posterior probabilities
of stress patterns. In the computation of posterior probabilities
of stress patterns, prior probabilities of stress patterns
reflecting the frequency of stress patterns in the language are
adjusted. This adjustment is done by considering lexical and/
or non-lexical sources of evidence for stress. This theoretical
idea, couched in the probabilistic inferential context, and, in
particular, its computational implementation were successful-
ly tested against stress assignment performance of native
speakers of Russian naming disyllabic words and nonwords.
One of the greatest advantages of the probabilistic inferential
approach to stress assignment is that it can provide predictions
concerning differences among stimuli, that is, it can predict
not only the most common stress pattern response to a word or
nonword, but also the difficulty/likelihood of assigning that
stress pattern to that word or nonword across various groups
of participants.
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