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Further Tests of a Two-State Model for Choice Reaction Times

Stephen J. Lupker and John Thejos

University of Wisconsin—Madison

Falmagne proposed that choice reaction times can be described by a simple
model involving two states of perceptual-motor preparation. Lupker and
Theios found support for the model in an n-choice (# =4, 6) reaction time
task in which stimulus presentation probability was varied as « for one stim-
ulus, but was constrained as (1 —#)/(n — 1) for all the remaining stimuli.
The present experiments involve four- and six-choice tasks in which the
stimuli differ in their individual presentation probabilities. Sequential mean
reaction times and various properties of the reaction time distributions are
considered. The model was able to predict with reasonable accuracy all the
sequential mean reaction times except those for alternating stimulus se-
quences. The fixed point and other distributional properties seemed to hold
on a general level. However, detailed inspection revealed a few systematic
deviations between the data and distributional properties predicted by the

two-state model.

Falmagne (1965) has proposed a simple,
binary mixture model for choice reaction
time which can be completely specified by
three assumptions.

1. On any trial the subject is either
prepared or unprepared for each possible
stimulus,

2. If the subject is prepared for the
presented stimulus on a trial, his reaction
time is a random sample from a distribu-
tion, fi(¢), with mean u, and variance o1
If the subject is unprepared for the pre-
sented stimulus on a trial, his reaction
time is a random sample from a distribu-
tion, f;(¢), having mean u, and variance o4?
where u1 < us2 and o2 < 022

3. A subject changes his state of prepa-
ration for a stimulus in the following
manner: [f he was prepared for a stimulus
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on Trial #» and that stimulus was presented
on Trial 7, he maintains his preparation
for that stimulus. If the stimulus was not
presented, he loses his preparation with
probability . If he was unprepared for
a stimulus and it was presented, he be-
comes prepared for it on Trial » + 1 with
probability a’. If the stimulus was not
presented on Trial #, he remains un-
prepared for it on Trial n 4 1.

From these three assumptions, Falmagne
derived p;, the asymptotic probability of
being prepared for Stimulus 2,

pi = ma/[ma + (1 —m)d’], (1)

where m; is the presentation probability
of Stimulus 7. The reader should note that
if it is assumed that ¢ = @', the proba-
bility of being prepared for Stimulus ¢
reduces to ;. It should also be noted that p;
is always a monotonic function of ;.
Falmagne's (1965) model! yielded a good
fit to his own data (i.e., mean reaction
times, repetition reaction times, and em-
pirical variances) in a six-choice reaction
time task. However, Falmagne (1968) later
demonstrated that his empirical reaction
time distributions failed to satisfy a simple
property of binary mixture models. This
property, called the fixed point property,
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Figure 1. Obtained probability density functions from Falmagne’s (1965) six-choice reaction time

task.

can be demonstrated quite simply by con-
sidering the fact that we can write the
empirical density function for Stimulus ¢,
gi(t), as a combination of the two theo-
retical density functions, fi(¢) and f2(¢):

gi(t) = pi-fi()) + (1 — p) £ (1), (2)

where again p; is the asymptotic proba-
bility of being prepared for Stimulus 4.
Because of the nature of continuous den-
sity functions, there must exist a point,
bo, at which fi(4) = f2(fe) = ¢. That is,
there must exist a point at which the two
theoretical density functions cross. There-
fore, by examining Equation 2, we can see
that the empirical density functions at £,
(i.e., gi(t)) take on the same value, ¢, for
all stimuli. That is,

gito) = pi-filte) + (1 — p3)-falto),
is equivalent to
gito) = picc+ (1 — pi)ec,
which implies
gilt) = (i +1—pi)c=c

Falmagne's (1968) empirical distributions,

however, as displayed in Figure 1 did not
exhibit a fixed point.

More recently, Theios and Smith (1972)
have demonstrated good support for Fal-
magne’s model in a two-choice reaction
time task and Lupker and Theios (1975),
working with the assumption that ¢ = a/,
have demonstrated that the model can
give a good account of the data (mean
reaction times, sequential reaction times,
as well as the fixed point property) in
four- and six-choice reaction time tasks.
Lupker and Theios suggested the apparent
contradiction between their findings and
those of Falmagne (1968) arose because
three of Falmagne's stimuli were presented
so infrequently (presentation probabilities
of .06, .03, and .01) that the subject
essentially ‘“‘forgot’’ about them. Therefore,
on the few trials when they were presented,
the subject was in a deep state of un-
preparedness, so that a third distribution
came into play. This idea is supported
rather well by Falmagne and Theios (1969),
who found that a three state preparation
model gave a good account of Falmagne’s
original data.
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Posner (Note 1) suggested, however,
that because of the way Lupker and
Theios (1975) selected the presentation
probabilities, the subjects were essentially
forced into dichotomizing the stimulus set,
thus yielding results that can be inter-
preted in terms of a binary mixture. In
both of Lupker and Theios’ experiments,
one stimulus was presented with an arbi-
trary preselected probability, r, while the
other n — 1 stimuli were all presented
with probability (1 — #)/(» — 1). It had
been necessary for Lupker and Theios to
do this in order to obtain predictions from
one of the reaction time models they
tested. The point of the present experi-
ment is to test whether Lupker and
Theios’ results can be replicated in four-
and six-choice tasks when the stimuli all
have different presefitation probabilities,
which are at least as large as .10.

In addition to looking at the same
aspects of the data as Lupker and Theios
did, three other distributional properties
of binary mixtures are considered. The
first of these is a consequence of the fixed
point property. Consider just two stimuli,
i and j, where mi > w; and, therefore,
i > p;. We can write the difference be-
tween their density functions gi(t) — g;(¢)
as the following:

gi(t) — &)
= pi-f1(t) — p;-f1(?)
+ (1 = p0)f2(8) — (1 — p3)fo(2)
= (pi — pi)-[A(®) — f2(0)]

For all ¢t < ¢, (the fixed point), fi(t) > f=(¢)
and therefore the difference g;(¢) — g;{¢)
should be positive. However for all ¢ > i,
f1(?) is now less than f2(¢), so gi(t) — g;(t)
should be negative. In other words, for
all ¢ < ¢, the ordinal positions of the dis-
tributions must be maintained, but at #,
this ordinal relationship should reverse
itself. Noreen (Note 2) pointed out this
property of binary mixtures to us.

The next two properties concern the
cumulative distribution functions G;(¢).
The first of these is analogous to Stern-
berg's (Note 3) Long Reaction Time
property. As with the density functions,
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we can write these as binary mixtures,
Gi(t) = pi- F1(t) + (1 — pi)- Fo(2)
Gi(t) = p;- F1(t) + (1 — p;)- F2(2).

If we then consider the difference G;(t)
— Gy(#), we can, as with the density func-
tions, reduce it to the following:

Gi(t) — G;(¢)
= (ps — pi)-[F1(t) — F2()]. (3)

By the nature of the two functions, Fy(f)
is greater than F,(t) for all values of t.
If we let w; > =; so that pi > p;, we can
see that this difference should never be
negative. Therefore, empirically Gi(¢) and
G;(t) should never cross at any value of ¢.

For the final property (Link, Ascher,
& Heath, Note 4), let us introduce a third
distribution, Gy(¢), and consider another
difference:

Gi(t) — Gi(¥)
= (px — i) -[F1(t) — F2()]. (4)
If we make a ratio of Equations 3 and 4,

we can see that this ratio is predicted to
be constant:

Gi(t) — G;(8)
Gi(t) — G;(8)
_ (= p)-[F() — F2()]
(e — pi)-[F1(8) — F2(1)]
_bi— b
px— bi
Empirically, what this means is that at
any value of ¢, this ratio of differences
should be the same. In addition, if we
assume that a = ¢’, we have parameter-
free predictions of this ratio because p;

reduces to m;, the stimulus presentation
probability (see Equation 1).

Method
Subjects

The four- and six-choice tasks were run in the
same experimental period. Thirty University of
Wisconsin undegraduates (13 males and 17 females)
took part. They all received course credit for their
participation. All were right-handed. The first 24
took part in both tasks; the last 6 only took part
in the six-choice task.



CHOICE REACTION TIME

Apparatus

The subject was seated in an armchair that had
four buttons mounted on the end of each arm
under each of the subject’s four fingers (excluding
the thumb). The chair was enclosed in an Industrial
Acoustic Co. (Model 410A) sound-attenuating
room. The chair was positioned so that the subject
could see the screen of a Tektronix (Type RM 503)
oscilloscope which was placed against a 54 X 34.5c¢m
window in the booth. The remainder of the window
was occluded. The stimuli were green digits 3, 4,
5, 6, 7, and 8 (approximately 1 cm tall) presented
on the oscilloscope screen about .6 m from the
subject. A Digital Equipment Corp. PDP-8 com-
puter was programmed to present the stimuli and
to record on magnetic tape the stimulus, the
response, and the reaction time for each trial.

Procedure

In the four-choice task, the presentation proba-
bilities selected were .40, .30, .20, and .10. In the
six-choice task, the presentation probabilities were
.30, .20, .15, .15, .10, and .10. To counterbalance
properly, 24 probability-stimulus mappings were
constructed for the four-choice task and 36 proba-
bility-stimulus mappings were constructed for the
six~choice task. Each subject received four, 300-trial
sessions with a 5-min. rest between sessions. The
first 10 trials of each session were considered practice
and were disregarded. One probability-stimulus
mapping was used in the first two sessions; a dif-
ferent probability-stimulus mapping was used in
the last two sessions. For the first 24 subjects,
two of their sessions used one of the four-choice
mappings; their other two sessions used one of the
six-choice mappings. Of these subjects, 12 received
the four-choice task first and 12 received the
six-choice task first. The remaining 6 subjects
received one of the six-choice probability-stimulus
mappings in their first two sessions and another
one in their last two sessions. Because of this
procedure, every stimulus was assigned every
probability equally often and, therefore, each
stimulus occurred equally often over the course
of the experiment.

Table 1
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A trial consisted of one of the stimuli being
randomly selected according to the assigned proba-
bilities and being presented to the subject. The
response-stimulus interval was 500 msec; and, as
stated, each subject received four, 300-trial sessions
with a 5-min. rest between sessions. Any session
with more than 3%, errors was immediately rerun.
The stimulus-response mapping was 3-left ring
finger, 4-left middle finger, 5-left index finger,
6-right index finger, 7-right middle finger, and
8-right ring finger. Stimulus 3 and Stimulus 8
were, of course, not used in the four-choice task.

Results

Mean Reaction Times

To get predictions for mean reaction
times and first- and second-order sequen-
tial reaction times for each stimulus
presentation probability in both tasks, it
was necessary to estimate five parameters.
The assumptions made were (a) ¢ = a’ is
a constant for all stimuli in a task, (b) u:
does not vary over tasks, and (c) u. for
the six-choice task is larger than u, for
the four-choice task. Chandler's (1969)
subroutine STEPIT was used to estimate
u1, the two values of uy, and the two
values of a. The values STEPIT yielded
were yup = 338, w2 = 600 (four choice),
u2 = 669 (six choice), @ = .30 (four choice),
and ¢ = .35 (six choice). The fit of the
two-state model to the data can be seen
in Tables 1 and 2 which contain the mean
and sequential reaction times for all four
presentation probabilities for both tasks.
The sequences should be read left to right,
a 0 indicating that the stimulus under
consideration was not presented on that
trial and a 1 indicating that the stimulus

Obtained and Predicted Sequential Mean Reaction Times (in msec) for
All Four Presentation Probabilities for the Four-Choice Task

xi = .10 i = .20 i = ,30 ri = .40
Sequence» Obtained Predicted Obtained  Predicted Obtained  Predicted Obtained  Predicted
(mean) 1 576 574 543 548 520 521 495 495
1t 494 504 480 486 474 467 458 449
01 587 582 587 563 539 545 521 526
111 421 455 411 442 440 429 430 416
o1 503 510 500 497 490 484 478 471
101 616 533 558 519 544 506 515 593
001 584 587 557 574 536 561 524 548

8 1 = gtimulus presented; 0 = stimulus not presented.
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Table 2
Obtained and Predicted Sequential Mean Reaction

AND JOHN THEIOS

Times (¢n msec) for

All Four Presentation Probabilities for the Six-Choice Task
i = .10 wi = .15 m = .20 7 = .30
Sequences Obtained  Predicted Obtained  Predicted Obtained Predicted Obtained  Predicted
(mean) 1 638 636 618 619 604 603 572 570
11 522 532 511 521 501 510 493 489
01 649 647 638 637 628 626 608 604
111 449 464 471 457 464 450 461 436
(128§ 528 539 517 532 509 525 506 511
101 647 580 630 573 618 566 589 552
001 649 655 639 648 631 641 615 627

a1 = gtimulus presented; 0 = stimulus not presented.

under consideration was presented on that
trial. The reaction time under considera-
tion is from the trial signified by the 1
which is always in the rightmost position
of any sequence.

A chi-square test developed by Fal-
magne, Cohen, and Dwivedi (1975) was
performed on the 56 predictions (seven
sequences, four different probabilities, two
different tasks). This analysis, based on
51 degrees of freedom, yielded a chi-square
of 198.34, which casts some degree of
doubt on the validity of the model. How-
ever, a closer look at this analysis reveals
that the eight 101 (alternation) sequences
accounted for most (136.3) of this chi-
square value. In general, the model ade-
quately predicts the other 48 data points,
especially the mean and first-order sequen-

.24
.22
.20
.18
I8
14
12

.08
.06

.02
.00

PROBABIL!TY DENSITY IN INTERVAL

tial reaction times. However, it consist-
ently underpredicts the reaction time to
the alternation sequence, which is often
no different from the reaction time to the
double nonrepetition sequence (i.e., 001).
It should be pointed out that the chi-
square on the remaining 48 data points
(62.04) is barely significant (.05 > p
> .025) on 48 — 5 = 43 degrees of free-
dom. However, this analysis suffers from
the fact that the parameter values used
were chosen to fit all 56 points, not just
these 48.

Distributional Properties

The graphs of the empirical density func-
tions can be found in Figures 2 and 3 for
the four- and six-choice tasks, respectively.

—_
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Figure 2. Obtained probability density functions for the four-choice reaction time task (Note the
approximately equal probability density for all the functions in the neighborhood of 500 msec).
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Figure 3. Obtained probability density functions for the six-choice reaction time task (Note the
approximately equal probability density in the neighborhood of 550 msec).

The reader is left to judge for himself the
adequacy of the fit of the fixed point
property. We suggest, however, that there
seems to be a fixed point around ¢ = 500
in Figure 2 and around ¢ = 550 in Figure 3.
In any case, the fit is much better than
that obtained by either Falmagne (1968)
or by Lupker and Theios (1975) in Ex-
periment 2. The reader should also bear
in mind that when approximating these
functions by histograms, as we have done,
the specific intervals chosen can have some
influence on the shape of the curves.
A close look at Figures 2 and 3 reveals
that our second property of binary mix-
tures is not satisfied in either figure by
the distribution of the stimulus having
the largest presentation probability. The
points to consider are ¢ = 475 in Figure 2
and ¢ = 525 in Figure 3, where this dis-
tribution dips below other distributions of
less probable stimuli. It should also be
noted that it is precisely this distribution in
both cases which seems to be causing the
problem with the fixed point property.
The reader should also note that in Fal-
magne's (1968) data (see Figure 1) this
distribution seems to be especially out of
line. In addition, it is worth mentioning
that this property is also violated in the
data of Lupker and Theios (1975, see their
Figure 1).

To check the Sternberg (Note 3) Long
Reaction Time property, it is only neces-
sary to observe whether the distribution

PROBABILITY P(4£T)

CUMULATIVE

""300 350 400 450 500 880 600 880 700 780 600 B850 900 9SO

REACTION TIME (MILLISECONDS)

Figure 4. Obtained cumulative distribution func-
tions for the four-choice reaction time task (since
none of the four curves cross anywhere, they thus
satisfy Sternberg’s, Note 3, Long Reaction Time

property).
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Figure 5. Obtained cumulative distribution func-
tions for the six-choice reaction time task (since
none of the four curves cross anywhere, they thus
satisfy Sternberg’s, Note 3, Long Reaction Time
property).

functions cross at any point. The reader
can see by looking at Figures 4 and 5 that
none of the distribution functions cross in
either the four- or six-choice tasks. Thus,
Sternberg’s Long Reaction Time property
is not violated.

To evaluate the Link et al. (Note 4)
distributional property, it was deemed wise
to choose the three most reliable empirical
distributions and to regard with caution
those values of ¢ quite distant from the
middle of the distributions (500 msec for the
four-choice task and 550 msec for the six-
choice task). The reason for this is we are
considering here a statistic which is a ratio.
Therefore, when the denominator, Gy(2)
— G;(t), becomes quite small (as happens
at either large or small values of f), the
effect of sampling variability becomes pro-
found. For the four-choice task this meant
letting Gi(¢) be generated by the stimulus
with presentation probability .30, letting
G;(¢) be generated by the stimulus with
presentation probability .20, and letting
Gk (t) be generated by the stimulus with

STEPHEN ]. LUPKER AND JOHN THEIOS

presentation probability .40. The ratio
should then be as follows:
.30 — .20

Gi(t) — G;(t) i
G (t) — G;(8) ok — T T .40 — 20

For the six-choice task, Gi(¢) was generated
by the stimulus with presentation proba-
bility .20, G;(¢t) was generated by the
stimulus with presentation probability .15,
and Gy(t) was generated by the stimulus
with presentation probability .30. The
ratio should then be as follows:

Gi(t) — G; () _ Wi m .20 — .15 _ 1
G(t) — Gi(®)  mc—m; 30— .15 3°
The fit of the data to the ratio predictions

is presented in Table 3 and seems reason-
ably good especially for the six-choice data.

1
>

Errors

Error reaction times were not included
in the above analysis. As stated, if any
session had more than 59 errors overall
(i.e., 15 errors in 300 trials), it was im-
mediately rerun. This restriction, along
with our instructions to the subjects which
emphasized accuracy, served to keep the
error rate between 29% and 49, in over
759 of the sessions. It was hoped, of
course, that error rates would be unrelated
to presentation probability. However, this
appears not to be the case. While the

Table 3

Observed Values of the Link, Ascher, and
Heath Ratio for Both Four- and
Six-Choice Tasks

Four-choice Six-choice
obtained obtained
t ratios ratios

375 .67 47
425 .60 49
475 48 34
525 54 40
575 .69 35
625 .80 44
675 92 41
725 .83 41
775 75 .34
825 .50 .26
875 .50 25

Note, The predicted four-choice ratio was .50. The
predicted six-choice ratio was .33,
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trend is necessarily very slight because of
the 59, limit, error rate did increase as
presentation probability decreased in both
tasks. In the four-choice task, the error
rates were .020, .025, .032, and .049 for
presentation probabilities .40, .30, .20, and
.10, respectively. In the six-choice task,
the error rates were .016, .029, .035, and
.052 for presentation probabilities .30, .20,
.15, and .10, respectively. However, be-
cause of the truly small differences in error
rates, the effect this could have had on
the data appears to be minimal.,

Discussion

While the predictions of the model with
respect to mean and sequential reaction
times are not outstanding, they are sug-
gestive, Specifically, the model constantly
underpredicts the alternation (101) se-
quence, as the reader can see in Tables 1
and 2. Generally, there was no difference
between the reaction time to that sequence
and the reaction time to the double non-
repetition sequence (001). To our knowl-
edge, this seems to be a very rare result
in reaction time studies. In fact, Laming
(1973) has found the reaction time to the
alternation sequence is, at times, faster
than the reaction time to the single repe-
tition sequence (011) in a two-choice task.
Other investigators (e.g., Lupker & Theios,
1975; Remington, 1969) have generally
found the reaction time to the alternation
sequence to be intermediate between the
reaction times to the 011 and 001 sequences.

Falmagne et al. (1975), however, also
obtained the same result we did with one
of their three subjects in a two-choice task
but only for the least probable stimulus.
Why this result obtains in certain instances
and not in others is unclear, though a
general rule seems to be emerging. When
considering second-order sequential reac-
tion times, the difference between the two
nonrepetition sequences [RT(001) — RT
(101)7] is smaller than the differences be-
tween the two repetition sequences [RT
(011) — RT(111)] when a stimulus’ pre-
sentation probability is small. However,
when the presentation probability is large,
the first difference becomes larger than the
second. In our study with small presenta-
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tion probabilities, RT (001) — RT(101) was
essentially pushed to zero. Theoretically,
if one stimulus was presented often enough
it may be possible to drive the difference
RT(011) — RT(111) to zero. There would,
of course, be other variables of importance,
for example, the length of the response-
stimulus interval, so that in practice this
may not be possible.

It should be noted, however, that even
if -this discrepancy between observed and
predicted reaction time for the alternation
sequence is a real one, this reflects only
on the change of state assumption (3)
and not on the idea of two states of
preparation itself. A direct test of the
two-state assumption can be obtained by
looking at the distributional properties.
The change of state assumption was neces-
sary to derive the asymptotic probability
of being prepared for any given stimulus,
bi. As shown, the fixed point property
must hold regardless of the values of p;
used. The other distributional properties
are more or less independent of the values
of pi. That is, as the reader can see by
examining Equation 4, since p; is a mono-
tonic function of m;, both the second
property of distribution functions and
Sternberg's (Note 3) Long Reaction Time
property must still obtain. Finally, if p; is
a linear function of x; (a not too unreason-
able supposition), the Link et al. (Note 4)
ratio  [Gi(t) — G;(©)]/[G:(t) — Gi ()] is
still equal to (m; — m;)/(mx — ;). That is,

Gi) = i) _ p1— 1y

Ge(t) — Gi())  px — pi
_amit+b—(em+0b) m—m
—ark-l-b— ((Zﬂ',’+b) —7rk—7r,-'

Conclusions

While the two properties for cumulative
distribution functions (Link et al., Note 4,
and Sternberg's, Note 3, Long Reaction
Time property) seem to be born out quite
well in the data, there are two aspects of
the data the model does not totally cap-
ture. First of all, we have begun to have
doubts about the ability of the data to
satisfy the two properties of density func-
tions outlined earlier. In particular, the
empirical reaction time distribution of the
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stimulus which is presented most often
(whatever that presentation probability
might be) seems to be transposed left
from where it should be if the model were
correct. Second, the model fails badly in
predicting reaction time to the alternating
stimulus sequence (101) which we found
to be essentially no different from the
reaction time to the double nonrepetition
stimulus sequence (001). The model does,
however, yield adequate predictions of the
mean, first-order, and most second-order
sequential reaction times.

Falmagne et al. (1975) have recently
tested an extended version of the two-state
model which attempts to account jointly
for proportion of errors and error reaction
times. Overall, their results were quite
similar to ours. That is, while they found
the general pattern of results to be con-
sistent with the model, some specific de-
viations were observed. They concluded
that some of the parameters they had
assumed were invariant seemed to vary
as a function of the stimulus presentation
probability. Whether this will work in our
situation is somewhat doubtful. The prop-
erties of the empirical density functions
discussed above are independent of the
parameter values chosen. In addition,
finding equal reaction times for the alter-
nation and double nonrepetition sequences
while at the same time finding large re-
action time differences between the double
repetition (111) and single repetition (011)
sequences cannot be explained by a judi-
cious selection of parameter values. The
obvious step of dropping the ¢ = o’ as-
sumption was unsuccessful, as the loss in
degrees of freedom in no way made up for
the slight improvement in the predictions.

What these two problems might indicate
is that the underlying process is not a two-
state but a three-state process in which
the first state is a kind of superpreparation
state. (A model of this sort is also dis-
cussed by Falmagne et al., 1975.) Briefly,
since the probability of being super-
prepared for a particular stimulus would
be a monotonic function of that stimulus’
presentation probability, this would ex-
plain why the most probable stimulus
yielded a distribution shifted a bit left.
Or, perhaps a more general form of the
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three-state Falmagne and Theios (1969)
model would adequately describe the data.

In any case, we feel that overall the
distributional properties of the two-state
model were not badly violated in the
data; we see no reason as yet to reject
the two-state assumption as a simple,
heuristic model of the processes involved
in these choice reaction time tasks. The
two-state model should serve as a useful
tool in answering some of the basic ques-
tions regarding the temporal properties of
human choice behavior.
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