Orthographic neighbour hood effectsin parallel distributed processing models
Sears, Christopher R;Hino, Y asushi;L upker, Stephen J

Canadian Journal of Experimental Psychology; Sep 1999; 53, 3; ProQuest

pg. 220

Orthographic Neighbourhood Effects in Parallel Distributed
Processing Models

CHRISTOPHER R. SEARS, University of Calgary
YASUSHI HINO, Chukyo University
STEPHEN ]J. LUPKER, University of Western Ontario

Abstract Recent research in visual word recognition
suggests that the speed with which a word is identified is
influenced by the reader’s knowledge of other, orthographi-
cally similar words (Andrews, 1997). In serial-search and
activation-based models of word recognition, mental repre-
sentations of these “orthographic neighbours” of a word are
explicitly assumed to play a role in the lexical selection
process. Thus, it has been possible to determine the specific
predictions that these models make about the effects of
orthographic neighbours and to test a number of those
predictions empirically. In contrast, the role of orthographic
neighbours in parallel distributed processing models (e.g.,
Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989) is less clear. In this paper,
several statistical analyses of error scores from these types of
models revealed that low frequency words with large
neighbourhoods had lower orthographic, phonological, and
cross-entropy error scores than low frequency words with
small neighbourhoods; and that low frequency words with
higher frequency neighbours had lower error scores than
low frequency words without higher frequency neighbours.
According to these models then, processing should be more
rapid for low frequency words with large neighbourhoods
and for low frequency words with higher frequency neigh-
bours.

A word’s orthographic neighbourhood is classically defined
as the set of words that can be created by changing one letter
of the word while preserving letter positions (Coltheart,
Davelaar, Jonasson, & Besner, 1977). For example, the words
PINE, POLE, and TILE are all orthographic neighbours of the
word PILE. In recent years, there have been a number of
studies examining the effects of a word’s orthographic
neighbourhood on identification latencies (see Andrews,
1997, for a review), and a considerable, although sometimes
contradictory, database on this topic has now emerged.
Many models of the word recognition process do assume
that the lexical representations of the orthographic neigh-
bours of a presented word will be activated and will play an

important role in the lexical selection process. In what
follows, we first examine the predictions of serial-search
models (Forster, 1976; Paap, Newsome, McDonald, &
Schvaneveldt, 1982) and activation-based models (Grainger
& Jacobs, 1996; McClelland & Rumelhart, 1981) with regard
to orthographic neighbourhood effects. We then consider
the role of orthographic neighbours in parallel distributed
processing models (i.e., Plaut, McClelland, Seidenberg, &
Patterson, 1996; Seidenberg & McClelland, 1989), which
constitute the main focus of the present investigation.

ORTHOGRAPHIC NEIGHBOURHOOD EFFECTS IN SERIA.-
SEARCH MODELS

In serial-search models which incorporate a frequenc-
ordered search through a candidate set of lexical entries (e.g.,
Forster, 1976; Paap, Newsome, McDonald, & Schvaneveldt,
1982), the size of a word’s orthographic neighbourhood will
influence the speed with which a correct match 1s found.
More specifically, because a target word’s orthograph:c
neighbours will typically be members of an activated
candidate set {due to their similarity to the target), increases
in the number of neighbours will typically lead to increases
in the size of the candidate set, which will in turn produce
increases in the time required for lexical selection. According
to serial search models then, words with large neighbour-
hoods should typically be processed more slowly than words
with small neighbourhoods (such an effect can be referred 10
as “an inhibitory neighbourhood size effect”).

Because the search through the candidate set is frequenc~
ordered in these models, however, it is actually not the
absolute neighbourhood size of a word that is critical, but
the number of higher frequency neighbours in the word's
orthographic neighbourhood. That is, only higher fre-
quency neighbours would delay lexical selection, because
only those candidates would have to be evaluated prior 1o
the word itself during the frequency-ordered search for the
target’s lexical representation. Consequently, although large
neighbourhoods would, typically, delay lexical selection
(because words with large neighbourhoods usually possess
higher frequency neighbours), it is not the existence of
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neighbours, per se, but rather the existence of higher
frequency neighbours that produces a processing delay.
Thus, a basic prediction that serial search models make 1s
that words with higher frequency neighbours should be
processed more slowly than words without higher frequency
neighbours (such an effect is often referred to as “an inhibi-
tory neighbourhood frequency effect”).

The literature to date has provided only minimal support
for these predictions. Andrews (1989, 1992), for example,
found that lexical decision and naming latencies for low
frequency words with large neighbourhoods were shorter
than those for low frequency words with small neighbour-
hoods, a result which is exactly the opposite of the inhibi-
tory neighbourhood size effect predicted by serial-search
models. (For high frequency words, neighbourhood size had
little or no effect on response latencies. Thus, there is
typically a neighbourhood size by frequency interaction.)
Facilitatory neighbourhood size effects have also been
reported by Forster and Shen (1996) and Sears, Hino, and
Lupker (1995), with the latter investigators also reporting an
interaction between word frequency and neighbourhood
size. In fact, in a recent review of the existing literature,
Andrews (1997) noted that virtually all of the studies which
have examined the neighbourhood size effect with the lexical
decision task have reported either facilitatory or null
neighbourhood size effects, a situation which is clearly
problematic for serial-search models.

On the other hand, there is at least some evidence for the
existence of an inhibitory neighbourhood frequency effect
(Carreiras, Perea, & Grainger, 1997; Grainger, 1990;
Grainger & Jacobs, 1996; Grainger, O’Regan, Jacobs, &
Segui, 1989; Grainger & Segui, 1990; Huntsman & Lima,
1996; Jacobs & Grainger, 1992; Perea & Pollatsek, 1998).
That is, all these studies seem to show that lexical decision
latencies to low frequency words with higher frequency
neighbours are slower than those to low frequency words
without higher frequency neighbours. Further, using a
multiple regression analysis, Paap and Johansen (1994) have
reached a similar conclusion (although see Sears, Lupker, &
Hino, in press, for an alternative explanation for this
finding).

The story is not so simple, however, because it is compli-
cated by the fact that the inhibitory neighbourhood fre-
quency effect is typically not observed in studies which use
English stimuli (the majority of studies have used either
French, Dutch, or Spanish stimuli). Indeed, as Andrews
(1997) noted in her review, only two of the eight experi-
ments that have examined the effect of neighbourhood
frequency for English words in the lexical decision task have
reported an inhibitory effect (Huntsman & Lima, 1996;
Perea & Pollatsek, 1998). In the remaining experiments, null
or facilitatory neighbourhood frequency effects were
reported (Forster & Shen, 1996; Sears et al., 1995). For
example, in the Sears et al. study, in which neighbourhood
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size and neighbourhood frequency were factorially manipu-
lated, responses to words with higher frequency neighbours
were actually faster than responses to words without higher
frequency neighbours. The lack of a clear and consistent
inhibitory effect of higher frequency neighbours coupled
with the consistent finding of a facilitatory neighbourhood
size effect would appear to cause severe problems for serial-
search models.

ORTHOGRAPHIC NEIGHBOURHOOD
ACTIVATION-BASED MODELS

Although activation-based models of word recognition have
fared a bit better, the situation 1s similarly complicated. The
interactive-activation model (McClelland & Rumelhart,
1981) would seem to readily accommodate reports of
facilitatory neighbourhood size effects (Andrews, 1989,
1992; Forster & Shen, 1996; Sears et al., 1995) because the
orthographic neighbours of a word are assumed to contrib-
ute in a positive way to the activation of the word’s lexical
unit. More specifically, in this model, lexical selection is
achieved when a word’s lexical unit reaches a critical
activation threshold. When a word is presented, activation
starts to accumulate in the lexical units of both the presented
word and its orthographic neighbours. These partially
activated units send excitatory feedback back down to their
sublexical units. In turn these units send activation back up
to the lexical units, increasing lexical activation and, ulu-
mately, helping to push the activation of one of those units
over threshold.

According to Andrews (1989), everything else being
equal, low frequency words with large neighbourhoods
would benefit more from reciprocal activation than would
low frequency words with small neighbourhoods, because
a greater number of lexical units would participate in the
reciprocal activation process. Thus, low frequency words
should show a facilitatory neighbourhood size effect. In
contrast, high frequency words, which are assumed to have
higher resting activation levels than low frequency words,
would be less sensitive to the effects of these lexi-
cal-sublexical reverberations, because they could reach an
activation threshold quite quickly through direct activation
alone. Thus, high frequency words should show no neigh-
bourhood size effects as Andrews and others (e.g., Sears et
al., 1995) have reported.

Reports of facilitatory neighbourhood frequency effects
for low frequency words (e.g., Sears et al., 1995) could, 1n
theory, also be explained by the same mechanism. That 1s,
higher frequency neighbours, which possess higher resting
levels of activation, could produce stronger top-down
activation, which would accelerate the reciprocal activation
process. On the other hand, Grainger and colleagues have
instead argued that the interactive-activation model is ideally
suited for explaining inhibitory neighbourhood frequency
effects. According to Jacobs and Grainger (1992), the

EFFECTS IN
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intralevel inhibition between the lexical units of the model
should delay the activation of a word with higher frequency
neighbours. More specifically, when a neighbourhood is
activated by a target word, each lexical unit begins to inhibit
its neighbours. Because higher frequency neighbours have
high resting levels of activation, they would be much more
powerful inhibitors than lower frequency neighbours.
Consequently, the lexical unit of a word with higher
frequency neighbours would be subject to more inhibition,
which should delay lexical selection. Simulations by Jacobs
and Grainger indicate that their implementation of the
model does in fact produce such an inhibitory neighbour-
hood frequency effect. Interestingly, using the same parame-
ter settings, Jacobs and Grainger’s attempts to simulate
facilitatory neighbourhood size effects were unsuccessful.
This result led Jacobs and Grainger to the conclusion that
the neighbourhood size effect did not reflect the activity of
basic word recognition processes.

In a further attempt to address these issues, more recently,
Grainger and Jacobs (1996) have proposed an activation-
based model which can apparently accommodate both
facilitatory neighbourhood size effects and inhibitory (as
well as facilitatory) neighbourhood frequency effects in
lexical decision tasks. Grainger and Jacobs’s “multiple read-
out” model is based on the architecture of the interactive-
activation model (McClelland & Rumelhart, 1981), in which
a set of lexical and sublexical units accumulates activation
over time. The major assumption in the model is that
facilitatory neighbourhood size effects in lexical decision do
not actually arise during the lexical-selection process, but,
rather, are due to a variable response criterion which is
sensitive to the degree of overall lexical activation (the =
criterion). In contrast, Grainger and Jacobs have maintained
the assumption that the inhibitory neighbourhood fre-
quency effect is a true lexical selection effect, resulting from
intralevel competitive processes which occur during the
process of lexical selection. As reported in their paper, with
these two mechanisms and certain assumptions about how
the nature of the nonwords affects relative use of these
mechanisms, the model can be made to simulate both
facilitatory neighbourhood size effects (e.g., Andrews, 1989);
and inhibitory (e.g., Grainger et al., 1989), as well as
facilitatory (e.g., Sears et al., 1995), neighbourhood fre-
quency effects in lexical decision.

Unfortunately, the Grainger and Jacobs (1996) model still
has some difficulties because it predicts that an inhibitory
neighbourhood frequency effect should occur not just in
lexical decision but in any task in which unique word
identification is required, such as semantic categorization or
perceptual identification. Neither Forster and Shen (1996)
nor Sears, Lupker, and Hino (in press) observed such an
effect in their semantic categorization experiments. In
addition, Sears et al. reported that words with higher
frequency neighbours were identified more frequently than

Sears, Hino, and Lupke:

words without higher frequency neighbours in a perceptual
identification task (L.e., they observed a facilitatory neigh-
bourhood frequency effect). Thus, this model’s ability tc
accurately simulate neighbourhood effects in tasks othe:
than lexical decision appears to be somewhat limited.

Clearly, the fact that investigators have not yet estab-
lished the empirical role of higher frequency neighbours
makes it difficult to judge which particular model bes:
accounts for the data. The situation 1s made worse still by
the fact that these models do not make as unambiguous
predictions as originally thought. For example, the
interactive-activation model can accommodate facilitatory
neighbourhood size effects or inhibitory neighbourhooc
frequency effects, depending on whether top-down excit-
atory feedback or intralevel inhibition is assumed to domi
nate the model’s behaviour (i.e., depending on how the
parameter settings are selected). The predictions of serial:
search models can be just as ambiguous. Forster (1989), for
example, has suggested that by altering some noncrucial
assumptions in his version of the serial-search model, iz
would no longer predict inhibitory neighbourhood size o:
inhibitory neighbourhood frequency effects. Nonetheless
due to the efforts of previous researchers, our knowledge
about the constraints these models must work within wher.
trying to account for orthographic neighbourhood effect.
has been significantly advanced.

ORTHOGRAPHIC NEIGHBOURHOOD EFFECTS IN PARALLEI
DISTRIBUTED PROCESSING MODELS

In contrast to the efforts that have been put into understand
ing how serial-search and activation-based models woulc
account for orthographic neighbourhood effects, those same
effects in Seidenberg and McClelland’s (1989) paralle.
distributed processing (PDP) model have received relatively
little attention. In this model, there are no abstract units
corresponding to words. The representation of a word is
encoded in the pattern of activity across an interconnected
network of units. Experience with words during training
produces changes in the weights between units, such tha
words which have been presented to the model many times
will be better represented in the weights of the model.

To relate these patterns of activation to lexical decisior.
and pronunciation latencies, Seidenberg and McClelland
(1989) computed orthographic and phonological error
scores, which are measures of how close the model’s outpur
is to the desired (correct) output. According to the model,
lower orthographic error scores should correspond to
shorter lexical decision latencies, and lower phonological
error scores should correspond to shorter pronunciation
latencies. Orthographic and phonological error scores are,
of course, strongly influenced by the model’s experience
with words. For example, word frequency effects arise
because the network is exposed to high frequency words
much more often than low frequency words, and thus the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Orthographic Neighbours

model has more opportunities to encode their orthography
and phonology. As a result, the model produces lower
orthographic and phonological error scores for high fre-
quency words.

With regard to the issue of neighbourhood size,
Seidenberg and McClelland’s (1989) model would seem to
predict a facilitatory neighbourhood size effect. More
specifically, Seidenberg and McClelland reported that the
mean phonological error scores for Andrews’ (1989) low
frequency words with large neighbourhoods were lower
than those for her low frequency words with small neigh-
bourhoods. Moreover, for high frequency words no such
difference was apparent, which suggests that the model can
successfully simulate the interaction between word fre-
quency and neighbourhood size that Andrews reported (see
also Andrews, 1992, and Sears et al., 1995). In fact, according
to Andrews (1992), facilitatory neighbourhood size effects
are a natural byproduct of this model. That is, words that are
highly similar to one another would recruit similar units and
connections during training, and so the representation of a
word with many neighbours would be strengthened by the
encoding of its neighbours. Thus, compared to words with
small neighbourhoods, which would share connections with
few other words, words with large neighbourhoods should
exhibit lower phonological and orthographic error scores.

Sears et al. (1995) suggested that reports of facilitatory
neighbourhood frequency effects could be explained by the
model in a similar fashion. That is, low frequency words
would benefit from the existence of higher frequency
neighbours because these neighbours would be words whose
representations have been encoded by the network many
times. The strengthened connections between the units that
encode the word’s higher frequency neighbours will aid in a
low frequency word’s identification as well because many of
the same units will be recruited by the word itself.
Thus, large neighbourhoods and higher frequency neigh-
bours should affect the model in a similar manner — by
strengthening the connections among units that represent
similar orthographies. In fact, Sears et al. found that the
phonological error scores for their low frequency words
with higher frequency neighbours were generally lower than
those for low frequency words with no higher frequency
neighbours.

In spite of these initial analyses, at this point these
expectations about the model’s behaviour are mainly still
speculations because no comprehensive statistical analysis of
orthographic neighbourhood effects in the Seidenberg and
McClelland (1989) model has been conducted. That is,
although previous investigators have reported that phonolog-
ical error scores for words with large neighbourhoods were
generally lower than for words with small neighbourhoods,
the generalizability of these observations is limited. This is
because the observations were based upon the patterns of
error scores for the small sets of stimuli used in those
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particular experiments. Moreover, with the exception of the
Sears et al. (1995) study, the effects of higher frequency
neighbours in the model have not been examined. Conse-
quently, unlike the serial-search and activation-based models,
where more specific predictions have been made, the
predictions of the Seidenberg and McClelland model are
much less clear. In light of the controversy over the effects
of orthographic neighbours on the word recognition process
and which of these types of models provides the superior
account of that process, it would seem important to estab-
lish what the predictions of this model are.

Several researchers have, of course, shown that the
Seidenberg and McClelland (1989) model has a number of
serious problems. In particular, the model has difficulty
accurately pronouncing nonwords and certain exception
words, and in explaining lexical decision performance in
general (Besner, Twilley, McCann, & Seergobin, 199C;
Coltheart, Curtis, Atkins, & Haller, 1993; Fera & Besner,
1992). A more recent implementation of the model (Plaut,
McClelland, Seidenberg, and Patterson, 1996; Simulation 4)
is, however, able to pronounce nonwords as well as skilled
readers can. Moreover, the model goes some way towards
implementing the lexical-semantic pathway that the
Seidenberg and McClelland simulation omitted. Like the
Seidenberg and McClelland model, the Plaut et al. (1996)
model is a feed-forward network, and an error score — in
this case, cross-entropy error — measures how close the
model’s output is to the correct pronunciation, with lower
cross-entropy errors, presumably, corresponding to shorter
pronunciation latencies. To our knowledge, the effects of
orthographic neighbours in this model have not been
examined at all. (Note that the Plaut et al. model does not
simulate lexical decision performance, although preliminary
efforts to do so have been made; Plaut, 1997. In what
follows, we assume that the effects of orthographic neigh-
bours on both naming and lexical decision performance will
be quite similar in these types of models. As will be seen,
this clearly does turn out to be the case for the Seidenberg &
McClelland model.) Thus, the purpose of this investigation
was to determine what effect, if any, orthographic neigh-
bours have in both of these models. By pursuing this goal,
the models’ success in accommodating current and future
findings can be better evaluated.

Method

STIMULL

The training set for the Seidenberg and McClelland (1989)
model consisted of 2,897 monosyllabic words of three or
more letters in length. Because most of the previous studies
on orthographic neighbourhood effects have used stimuli ot
four or five letters in length (e.g., Andrews, 1989, 1992
Forster & Shen, 1996; Grainger et al., 1989; Sears et
al.,1995), only the error scores for four- and five-letter words
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were examined in the following analyses.' In addition,
because a logarithmic transformation of Kucera and Francis’s
(1967) normative frequencies was employed in the regression
analyses, words with normative frequencies of zero were
excluded from the stimulus set. The final set of stimuli used
in the present analyses consisted of 2,073 words. For each of
these words, the Kucera and Francis normative frequency,
the number of orthographic neighbours, and the number of
higher frequency neighbours were determined. The statist-
cal properties (mean and range) for each of these variables
were as follows: normative frequency (91.4, 1-10,595);
number of neighbours (7.03, 0-24); number of higher
frequency neighbours (2.61, 0-21).

The training set for the Plaut et al. (1996) model (Simula-
tion 4) consisted of the 2,897 words in the Seidenberg and
McClelland model’s corpus plus an additional 101 words.”
To allow direct comparisons between this model and the
Seidenberg and McClelland (1989) model, the same 2,073
words selected from the Seidenberg and McClelland corpus
were also used in the analyses of the Plaut et al. model.

Results

EFFECTS OF NEIGHBOURHOOD SIZE

In the first analysis, the mean orthographic and phonological
error scores from Seidenberg and McClelland’s (1989) model
for words with large and small neighbourhoods were
examined. Consistent with most of the previous literature,
in this and the related analyses (although not in the multiple
regression analyses), words with less than five neighbours
were classified as small neighbourhood words and words
with five or more neighbours were classified as large neigh-
bourhood words. Using these criteria, 951 of the words had
small neighbourhoods, and 1,122 had large neighbourhoods.
The mean orthographic error score for the words with large
neighbourhoods (6.49) was significantly lower than the mean
orthographic error score for the words with small neigh-
bourhoods (9.82), #(2071) = 16.77, SE = 0.19. (Unless
otherwise stated, the p values for all significant statistics
reported in the text are less than .05.) Similarly, words with
large neighbourhoods had, on average, lower phonological
error scores than words with small neighbourhoods (4.37
versus 5.65), £(2071) = 8.66, SE = 0.14.

Cross-entropy error scores from the Plaut et al. (1996)
simulation were submitted to the identical analysis. As was
the case with the orthographic and phonological error
scores, the mean error score for the words with large
neighbourhoods (0.0482) was significantly lower than the
mean error score for the words with small neighbourhoods
(0.0723), £(2071) = 8.95, S = 0.003.

! We thank Mark Seidenberg and James McClelland for making these
data available to us.

We are grateful to David Plaut for making these data available to us.
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TABLE 1

Mean Orthographic and Phonological Error Scores From the Seidenberg
and McClelland (1989) Model, and Mean Cross-entropy Error Score
From the Plaut et al. (1996) Model, for High Frequency and Low
Frequency Words With Small and Large Neighbourhoods

High frequency words ~ Low frequency words

Error score Small N Large N Small N Large N
Orthographic 4.52 431 11.03 7.20
Phonological 347 3.48 6.23 4.67
Cross-entropy 0.0264 0.0258 0.0836 0.0558
(119) (181) (758) (827)

Note. Small N = small neighbourhood. Large N = large neighbourhood
Number of cases per group in parentheses.

As previously noted, several investigators have reportec
interactions between word frequency and neighbourhooc
size. In Andrews’ (1989) experiments, for example, lexica
decision and naming latencies for low frequency words witt.
large neighbourhoods were shorter than those for low
frequency words with small neighbourhoods. For high
frequency words, however, large neighbourhoods had little
or no effect on response latencies. Consequently, it is ot
some interest to determine whether an analogous pattern of
data would be found in the Seidenberg and McClelland
(1989) and Plaut et al. (1996) simulations’ error scores. To
this end, the error scores for high frequency and low
frequency words with large and small neighbourhoods were
submitted to a 2 (Word Frequency: high versus low) x 2
(Neighbourhood Size: small versus large) analysis of vari-
ance. For the purposes of this analysis, words with norma-
tive frequencies greater than or equal to 100 were considered
high frequency words, and words with normative frequen-
cies less than or equal to 50 were considered low frequency
words. Words with frequencies between 51 and 99 (inclu-
sive) were not used in this analysis. (The mean neighbour-
hood sizes for the low frequency words with small neigh-
bourhoods and the low frequency words with large neigh-
bourhoods were 2.89 and 11.05, respectively. For the high
frequency words, the mean neighbourhood sizes were 2.9
and 10.32 for the small neighbourhood and the large
neighbourhood words, respectively.) The mean error scores
for these stimuli are listed in Table 1.

In the analysis of Seidenberg and McClelland’s (198%)
orthographic error scores, there was a main effect of word
frequency, A1, 1881)= 296.99, MSE = 18.11, a main effect of
neighbourhood size, K1, 1881) = 54.77, MSE = 18.11, and an
interaction between word frequency and neighbourhood
size, F(1, 1881) = 43.96, MSE = 18.11. For the phonological
error scores, there was also a main effect of word frequency,
F(1, 1881)= 100.86, MSE = 10.88, a main effect of neighbour-
hood size, (1, 1881) = 8.73, MSE = 10.88, and a significant
interaction, F(1, 1881) = 19.80, MSE = 10.88. For the high
frequency words, the mean orthographic error scores for the
small neighbourhood and large neighbourhood words were
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quite similar and not significantly different, #(298) = 1.42, SE
= 0.14, as were the mean phonological error scores, 1(298) =
1.19, SE = 0.26. In contrast, low frequency words with large
neighbourhoods had significantly lower orthographic error
scores than low frequency words with small neighbour-
hoods, £(1583) = 16.53, SE = 0.23. This was true for the
phonological error scores as well, £(1583) = 9.02, s£ = C.17.

An analysis of Plaut et al.’s (1996) cross-entropy error
scores revealed an identical pattern of results. There was a
main effect of word frequency, A1, 1881)= 125.00, MSE =
0.004, a main effect of neighbourhood size, (1, 1881) =
13.18, MSE = 0.004, and a significant interaction, F(1, 1881)
= 12.05, MSE = 0.004. For high frequency words, there was
no significant difference in the mean cross-entropy errors for
the words with small and large neighbourhoods, £(298) =
.29, SE = 0.002. However, low frequency words with large
neighbourhoods had lower cross-entropy error scores than
low frequency words with small neighbourhoods, #(1583) =
8.37, SE = 0.003. Thus, the Plaut et al. model, like the
Seidenberg and McClelland (1989) model, captures the
interaction between word frequency and neighbourhood size
reported in the literature. That is, both models predict that
low frequency words with large neighbourhoods should be
processed faster than low frequency words with small
neighbourhoods; however, there should be little evidence of
a neighbourhood size effect for high frequency words.

EFFECTS OF HIGHER FREQUENCY NEIGHBOURS

To evaluate the effects of higher frequency neighbours in a
word’s orthographic neighbourhood, error scores for words
with and without higher frequency neighbours were
examined. Because the existence of higher frequency neigh-
bours is correlated with word frequency (i.e., low frequency
words are more likely to have a higher frequency neigh-
bour), separate analyses of the low frequency and high
frequency words were conducted. For the purposes of this
analysis, words with normative frequencies greater than or
equal to 100 were considered high frequency words, and
words with normative frequencies less than or equal to 50
were considered low frequency words. Words with frequen-
cies between 51 and 99 (inclusive) were not used in this
analysis.

As shown in Table 2, the mean Seidenberg and
McClelland (1989) orthographic error score for the low
frequency words with higher frequency neighbours was
substantially lower than the mean orthographic error score
for the low frequency words with no higher frequency
neighbours, £(1583) = 7.87, SE = 0.32. Phonological error
scores were also lower for low frequency words with higher
frequency neighbours, (1583) = 3.98, SE = 0.23, as were
Plaut et al.’s (1996) cross-entropy error scores, (1583) =
3.05, s =0.004.

A less consistent pattern of results emerged in the analysis
of the high frequency words. The mean Seidenberg and
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TABLE 2

Mean Orthographic and Phonological Error Scores From the Seidenberg
and McClelland (1989) Model, and Mean Cross-entropy Error Scores
From the Plaut et al. (1996) Model, for High Frequency and Low
Frequency Words With and Without Higher Frequency Neighbours

High frequency words Low frequency words

Error score No HEFN HFN NoHFN HEN
Orthographic 4.49 4.26 HLI7 8.60
Phonological 3.13 3.68 6.19 5.26
Cross-entropy 0.0249 0.0276 0.0804 0.0668

(175) (125) (271) (1314)

Note. No HE N = no higher frequency neighbours; HF N = higher
frequency neighbours. Number of cases per group in parentheses.

McClelland (1989) orthographic error scores for high
frequency words with and without higher frequency
neighbours were not significantly different, #(298) = 1.5, st
= 1.47, nor were the mean Plaut et al. (1996) cross-entropy
error scores, £(298) = 1.26, SE = .002. However, high
frequency words with higher frequency neighbours had
significantly higher Seidenberg and McClelland phonologi-
cal error scores than high frequency words without higher
frequency neighbours, #(298) = 2.07, SE = .26.

With regard to the processing of low frequency words.
the basic conclusion that these results suggest is that.
according to the models, the presence of higher frequency
neighbours in a low frequency word’s orthographic neigh-
bourhood should actually be beneficial to processing. Thus.
both models will have great difficulty accommodating the
inhibitory neighbourhood frequency effects reported by
Grainger and colleagues (e.g., Grainger, 1990), because in
those studies responses to low frequency words with higher
frequency neighbours were slower than the responses to low
frequency words without higher frequency neighbours. For
the high frequency words the interpretation is not as
straightforward, but we will defer any discussion of these
findings until after the multiple regression analyses have
been presented.’

3 We also examined the data from Plaut et al.’s (1996) Simulation 3
which, unlike Seidenberg and McClelland’s (1989) simulation anc
Plaut et al’s (1996) Simulation 4, was a fully interactive recurrem:
network that generated settling times for items rather than erro:
scores. In this simulation, after a word is presented to the network
the unit activations eventually settle into a stable pattern representing
the phonological output, with the settling times intended to be
directly analogous to pronunciation latency. An analysis of thesc
sertling times revealed that low frequency words with large neigh
bourhoods had significantly faster settling times than low frequency
words with small neighbourhoods (1.74 versus 1.80), £(1566) = 4.79
SE = 0.01, and that low frequency words with higher frequenc;
neighbours had significantly faster settling times than low frequenc:
words without higher frequency neighbours (1.76 versus 1.81)
£(1566) = 3.35, SE = 0.01. Neither neighbourhood size nor neigh
bourhood frequency had any effect on the settling times for higl
frequency words. (Note that the items to which the model made ar.
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MULTIPLE REGRESSION ANALYSES

According to the previous analyses, the Seidenberg and
McClelland (1989) and Plaut et al. (1996) models both
predict that, for low frequency words, large neighbourhoods
and higher frequency neighbours should facilitate word
identification and naming. However, because word fre-
quency, neighbourhood size, and neighbourhood frequency
are all correlated with one another to varying degrees,
converging evidence on these issues should also be obtained
through the use of multiple regression analyses. To this end,
multiple regression analyses were conducted for each of the
three types of error scores.

In the first analysis, the entire data set of 2,073 words was
analyzed. The predictor variables were log word frequency,
the number of orthographic neighbours, and the number of
higher frequency neighbours (the predictor variables were
entered simultaneously).* Partial correlation coefficients were
computed to assess the unique correlation between the
models” error scores and each of the predictor variables, and
are listed in Table 3. In the multiple regression analysis of
Seidenberg and McClelland’s (1989) orthographic error
scores, 44.6% of the variance was explained by these three
variables, (3, 2069) = 556.60, MSE = 12.73. There were
significant negative partial correlations for word frequency,
the number of neighbours, and the number of higher
frequency neighbours. Specifically, a larger number of
neighbours, the existence of higher frequency neighbours,
and higher word frequency were associated with lower
orthographic error scores when the effects of the other two
variables were partialled out.

For Seidenberg and McClelland’s (1989) phonological
error scores, 18.4% of the variance was explained by these
variables, F(3, 2069) = 155.76, MSE = 9.42. Once again, there
were significant negative partial correlations between the
phonological error scores and word frequency, the number
of neighbours, and the number of higher frequency neigh-
bours. Although the magnitude of the partial correlations
was smaller than those in the orthographic error scores
analysis, the pattern of results was identical. In particular, a
larger number of neighbours, the existence of higher fre-

“error response” were not included in any of these analyses.)

*  Preliminary analyses revealed that word length (four or five letters)
was not a significant predictor in any of the regression analyses of the
phonological error scores or the cross-entropy error scores. For the
orthographic error scores, the partial correlations for word length
were statistically significant (and negative), but the increment in the
percentage of variance explained by this variable (above and beyond
that explained by log word frequency, the number of neighbours, and
the number of higher frequency neighbours) was very small (less than
0.5%), which may have been due to the restricted range of this
variable (i.e., all the stimuli were either four or five letters in length).
For these reasons word length was not used as a predictor variable in
any of the regression analyses.
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TABLE 3

Partial Correlation Coefficients for the Orthographic and Phonologica
Error Scores From the Seidenberg and McClelland (1989) Model, and for
the Cross-entropy Error Scores From the Plaut et al. (1996) Model

Error score

Predictor variable ~ Orthographic ~ Phonological ~ Cross-entropy

Low frequency and high frequency words

Log WF 5-0f .35 =24
N 512 -.06 .08
N HFN =22 =10 .05

Low frequency words

Log WF =51 =i St
N =13 -.06 -.08
N HFN 117 -.10 .04

High frequency words

Log WF -.29 -.01 =07
N -.01 =13 =05
N HFN ~.14 +.39 +.21

Note. Log WF = Log word frequency. N = number of neighbours.
N HEN = number of higher frequency neighbours.

quency neighbours, and higher word frequency were
associated with significantly lower phonological error scores
For Plaut et al.’s (1996) cross-entropy error scores, 24.6% ol
the variance was explained by these variables, £(3, 2069) =
226.02, MSE = 0.002. Again, there were significant negative
partial correlations between these error scores and word
frequency, the number of neighbours, and the number ot
higher frequency neighbours.

Because most investigators have focused on orthographic
neighbourhood effects for low frequency words, separate
regression analyses were conducted on this subset of the
stimuli (Le., words with normative frequencies less than or
equal to 50). The analysis of Seidenberg and McClelland’s
(1989) orthographic error scores revealed that log word
frequency, neighbourhood size, and the number of highe:
frequency neighbours accounted for 4C.0% of the variance.
F(3, 1581) = 351.78, MSE = 14.94. The partial correlation:
are listed in Table 3. There were significant negative partial
correlations for word frequency, the number of neighbours.
and the number of higher frequency neighbours. Similarly.
the partial correlations between the phonological erros
scores and these variables were all significant and negative
Together these variables accounted for 18.0% of the vari
ance, F(3, 1581) = 116.01, #SE = 10.32. In the analysis o!
Plaut et al.’s (1996) cross-entropy error scores, there werc
significant negative partial correlations for word frequency
and the number of neighbours, but the partial correlatior
between cross-entropy error and the number of highe:
frequency neighbours (-.04) was not statistically significan:
(p = .11). Together these variables accounted for 23.4% o*
the variance, F(3, 1581) = 161.82, MSE = 0.0C3.

Finally, separate regression analyses were conducted or
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the set of high frequency words (i.e., words with normative
frequencies greater than or equal to 100). In the analysis of
Seidenberg and McClelland’s (1989) orthographic error
scores, log word frequency, neighbourhood size, and the
number of higher frequency neighbours accounted for 8.9%
of the variance, A3, 296) = 9.72, MSE = 1.45. There were
significant partial correlations for word frequency and for
the number of higher frequency neighbours, but not for the
number of neighbours. In contrast, for Seidenberg and
McClelland’s phonological error scores there was a signifi-
cant negative partial correlation for neighbourhood size, a
significant positive partial correlation for the number of
higher frequency neighbours, but no significant partial
correlation for word frequency. Together these variables
accounted for 16.6% of the variance, (3, 296) = 19.67, MSE
= 4.35. Similarly, for Plaut et al.’s (1996) cross-entropy error
scores there was a significant negative partial correlation for
neighbourhood size, a significant positive partial correlation
for the number of higher frequency neighbours, but no
significant partial correlation for word frequency. A total of
6.1% of the variance was explained by these variables, F(3,
296) = 6.47, MSE = 0.0003.°

Discussion

The important findings of this investigation are as follows.
First, words with large neighbourhoods had lower ortho-
graphic, phonological, and cross-entropy error scores than
words with small neighbourhoods. Importantly, only the
low frequency words benefitted from the presence of a large
neighbourhood, as the error scores for high frequency words
with large and small neighbourhoods were not significantly
different from one another. Consequently, as noted, both
models capture the interaction between word frequency and
neighbourhood size that Andrews (1989, 1992) and Sears et
al. (1995) have reported.

Second, compared to low frequency words with no
higher frequency neighbours, low frequency words with
higher frequency neighbours had, on average, lower ortho-
graphic, phonological, and cross-entropy error scores. As
noted, this result suggests that both models will have
difficulties accommodating the inhibitory neighbourhood
frequency effects reported by Grainger and colleagues,

> In the regression analysis of the settling times from Plaut et al.’s (1996)
Simulation 3 (excluding “error responses”), for the entire data set,
only the partial correlations for word frequency (-.15) and the
number of neighbours (-.04. p = .05) were statistically significant.
Together these variables accounted for 4.2% of the variance, A3, 2046)
= 30.27, MSE = 0.05. In a separate analysis of the low frequency
words, word frequency was the only significant predictor (-.14), and
accounted for 3.4% of the variance, A(3, 1564) = 18.37, MSE = 0.05. In
the analysis of the high frequency words, the partial correlations for
the number of neighbours (-.13) and the number of higher frequency
neighbours (.21) were statistically significant, but the partial correla-
tion for word frequency was not. Together these variables accounted
for 5.0% of the variance, A(3, 291) = 5.13, MSE = 0.02.
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although they would appear to be quite consistent with the
facilitatory neighbourhood frequency effects reported by
Sears et al. (1995, in press).

Third, the regression analyses indicated that, for low
frequency words, the number of neighbours and the number
of higher frequency neighbours were independently (nega-
tively) correlated with both models’ error scores. That is,
when the effects of word frequency and the number of
higher frequency neighbours were partialled out, larger
neighbourhood size was associated with lower orthographic,
phonological, and cross-entropy error scores. Similarly,
when the effects of word frequency and the number of
neighbours were partialled out, the existence of higher
frequency neighbours was associated with lower error scores
in both of the models. Consequently, both models predict
that, for low frequency words, large neighbourhoods and
higher frequency neighbours should facilitate word recogni-
tion and naming independently of one another.

The results for the high frequency words were slightly
different. For high frequency words, the existence of higher
frequency neighbours was associated with higher, not lower,
phonological and cross-entropy error scores (although this
was not the case for the orthographic error scores). Accord-
ing to the models then, pronunciation latencies to high
frequency words with higher frequency neighbours should
be slower than those to high frequency words without
higher frequency neighbours. At present it is difficult to
evaluate this prediction because there has been only one
published experiment which has examined the effect of
higher frequency neighbours for high frequency words in a
pronunciation task (Sears et al., 1995; Experiment 2). In that
experiment, pronunciation latencies to high frequency
words with and without higher frequency neighbours were
not significantly different from one another. While this
result casts some doubt on the empirical validity of this
particular prediction, additional studies will be necessary
before any definitive conclusions can be reached.

It is worth noting, however, that the mean phonological
error score for Sears et al.’s (1995) high frequency words
with higher frequency neighbours (3.05) was lower, not
higher, than the mean phonological error score for their
high frequency words without higher frequency neighbours
(3.15). This was true of the cross-entropy error scores as well
(0.0222 versus 0.0241, respectively, for the words with and
without higher frequency neighbours). Thus, the naming
latencies to this particular sample of high frequency words
do not provide a fair test of the models’ predictions with
regard to neighbourhood frequency effects for high fre-
quency words.

Relatedly, an examination of the models’ error scores in
experiments that have reported conflicting neighbourhood
effects may provide information useful for ascertaining the
source of these descrepancies. Consider, for example, Perea
and Pollatsek’s (1998) Experiment 1, where lexical decision
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latencies to low frequency words with higher frequency
neighbours were slower than those to low frequency words
without higher frequency neighbours (an inhibitory neigh-
bourhood frequency effect), and Sears et al.’s (1995) Experi-
ment 4a, where a facilitatory neighbourhood frequency was
observed. An examination of the orthographic error scores
for Perea and Pollatsek’s stimuli revealed that their words
with higher frequency neighbours had a higher mean
orthographic error score (9.45) than their words without
higher frequency neighbours (9.09), whereas Sears et al.’s
words with higher frequency neighbours had a lower mean
orthographic error score (7.32) than words without higher
frequency neighbours (7.51). Thus, according to the
Seidenberg and McClelland model, and consistent with the
findings of these investigators, the neighbourhood frequency
effect should have been inhibitory in the Perea and Pollatsek
experiment, and facilitatory in the Sears et al. experiment,
exactly as observed. (Note that the mean orthographic error
scores used in these comparisons are based on a restricted set
of words, as the Seidenberg and McClelland model was
trained with 51% of the words from Perea and Pollatsek’s
experiment and 86% of the words from Sears et al.’s experi-
ment.)

Another result of note is the consistency in the pattern
of orthographic neighbourhood effects in both models.
Although the Plaut et al. (1996) simulation is superior to the
Seidenberg and McClelland (1989) simulation in several
important ways (most notably its superior performance
pronouncing nonwords), the effects of orthographic neigh-
bours in the models is strikingly similar. No doubt this is
due to the common principle embodied in the two models
— low frequency words with many neighbours, or with
higher frequency neighbours, will have their pattern of
activity strengthened many times during training, which will
facilitate their processing.

The implications of these findings for the two theories are
fairly clear. Although there is currently some empirical
controversy as to whether higher frequency orthographic
neighbours facilitate or inhibit lexical processing, the
Seidenberg and McClelland (1989) and the Plaut et al. (1996)
models do make very specific predictions in this regard. In
this respect, these models will have great difficulty accommo-
dating the inhibitory neighbourhood frequency effects
reported by Grainger and colleagues, because for low
frequency words, the existence of higher frequency neigh-
bours was associated with lower, not higher, orthographic,
phonological, and cross-entropy error scores. On the other
hand, these models would seem to be quite compatible with
the facilitatory neighbourhood size effects reported by
Andrews (1989, 1992), as well as the facilitatory neighbour-
hood frequency effects reported by Sears et al. (1995, in
press). Clearly, any judgements about the models’ ultimate
success in accommodating orthographic neighbourhood
effects must await a resolution of any empirical controver-
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sies. In the meantime, investigators will now have a bette:
understanding of what these models have to say about the
effects of orthographic neighbours.

We thank Jennifer Chesson for creating the data sets that were
analyzed in this study, and Theresa Kline for statistical advice
We also thank Sally Andrews and Ron Borowsky for their very
helpful reviews. Correspondence concerning this article should
be addressed to Christopher R. Sears, Department of Psychol
ogy, University of Calgary, 2500 University Drive, Calgary.
Alberta T2N IN4 (E-mail: sears@ucalgary.ca).
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Sommaire

Les voisins orthographiques d’'un mot sont les mots qui
peuvent étre créés en changeant une lettre sans modifier pour
autant la position des autres lettres (Coltheart, Davelaar,
Jonasson et Besner, 1977). Par exemple, les mots PINE, POLE
et TILE sont tous des voisins orthographiques du mot PILE.
Un certain nombre de recherches réalisées au cours des
derniéres années ont cherché 3 expliquer comment le temps
d’attente précédant lidentification d’un mot varie en
fonction des diverses caractéristiques des voisins orthographi-
ques d’un mot (voir Andrews, 1997), et il existe aujourd’hui
une considérable base de données, bien que contradictoires
quelquefois, sur le sujet.

Beaucoup de modéles du processus de reconnaissance d’'un
mot (p. ex. les modéles de recherche-série, d’activation)
présument de fagon explicite que les représentations lexicales
des voisins orthographiques d’un mot présenté seront
générées et joueront un réle déterminant dans le processus de
sélection lexicale. Il est possible par conséquent d’identifier
les prédictions spécifiques que ces modeles font a propos des
incidences des voisins orthographiques, et de procéder a une
analyse empirique d’un certain nombre d’entre elles. Par

opposition, les implications de ces mémes incidences pour
les modeles de traitement paralléle réparti de Seidenberg e:
McClelland (1989) et de Plaut, McClelland, Seidenberg e-
Patterson (1996) ont suscité relativement peu d’attention.

Plusieurs analyses statistiques des taux d’erreur associés
ces types de modéles font I"objet du présent document. Voict
les principaux résultats obtenus. Premierement, les mots
possédant un vaste voisinage orthographique affichaient un
taux d’erreur inférieur pour ce qui concerne I'orthographe,
la phonologie et I'entropie réciproque que les mots au
voisinage orthographique plus limité. Ces différences,
toutefois, n’ont été observées que pour les mots a fréquence
peu élevée. Aussi, les deux modéles reflétaient I'interaction
entre la fréquence d’'un mot et la taille du voisinage ortho-
graphique que Andrews (1989; 1992) puis Sears, Hino et
Lupker (1995) ont signalée.

Deuxi¢émement, si on les compare & des mots dont les
voisins orthographiques n’ont pas une fréquence élevée,les
mots dont le contraire est vrai avaient, en moyenne, un taux
d’erreur moindre pour ce qui concerne I'orthographe, la
phonologie et I'entropie réciproque. Ce résultat suggere que
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les deux modeles auront des difficultés i tenir compte des
effets inhibiteurs associés a la fréquence du voisinage ortho-
graphique et qu’ont signalés Grainger et ses collégues
(Grainger, 1990; Grainger et Jacobs, 1996; Grainger,
O’Regan, Jacobs et Segui, 1989; Grainger et Segui, 1990;
Jacobs et Grainger, 1992), bien que les modéles sont relative-
ment en mesure de tenir compte des effets facilitateurs
associés a la fréquence du voisinage orthographique qu’ont
signalés Sears et ses collegues (1995) puis Sears, Lupker et
Hino (sous presse).

Troisiémement, les analyses de régression ont démontré
que, dans le cas des mots a fréquence peu élevée, il y avait
une corrélation négative et indépendante entre, d’une part,
le nombre de voisins en général et le nombre de voisins a
frequence plus élevée, d’autre part, les taux d’erreur des deux
modeles. En d’autres mots, lorsqu’on élimine les effets de la

Sears, Hino, and Lupker

frequence d’un mot et du nombre de voisins a fréquence plus
élevée, un plus grand nombre de voisins affichaient un faible
taux d’erreur pour ce qui concerne 'orthographe, la phono-
logie et Ientropie réciproque. Par conséquent, les devx
modeles prédisent que, régle générale, et les voisinages
orthographiques nombreux et les voisins a fréquence plus
élevée devraient engendrer un traitement plus rapide des
mots a fréquence peu élevée dans pratiquement tous les
exercices de reconnaissance d’un mot.

Bien siir, tout jugement par rapport a la capacité fonda-
mentale des modeles de tenir compte des effets du voisinage
orthographique doit attendre la résolution des controverses
empiriques courantes mais, d’ici 13, les chercheurs auront
une meilleure idée des prédictions de ces modeéles relative-
ment aux effets des voisins orthographiques.
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