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Over the last decade, numerous methods for the multidimensional scaling (MDS) of
perceptions and preferences have been applied by researchers in marketing. However,
one notable gap in MDS methodology has been the lack of suitable models for
analyzing inherently asymmetric data relationships. Recently, Harshman (1978, 1982a)
has proposed a new family of models—called DEDICOM (DEcomposition into DIrec-
tional COMponents)—for analyzing data matrices that are intrinsically asymmetric.

In this article, the single-domain DEDICOM model is described and applied to two
illustrative cases in marketing research. The examples demonstrate that DEDICOM
solutions will sometimes make more substantive sense and provide significantly better
fits to asymmetric data than solutions obtained by factor analysis or MDS. DEDICOM
also provides a novel type of information—a description of asymmetric relations
among dimensions or clusters. Such information will often have useful marketing
implications.

(Multidimensional Scaling; Factor Analyses)

Introduction

Since the publication of Roger Shepard’s pioneering articles on multidimen-
sional scaling (Shepard, 1962), MDS methodology has received wide attention
and application by researchers in the behavioral and administrative sciences.
One of the most active applied fields has been marketing research; since the
late 1960s, MDS has been used in hundreds of marketing studies in industry
and government. For the interested reader, several general state-of-the-art
reviews of MDS (Shepard, 1974; Carroll, 1976; Carroll and Arabie, 1980)
have appeared. Also, at least one review directed specifically to marketing
research (Green, 1975) has been published.
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In MDS the prototypical data matrix that underlies the analysis of percep-
tual judgments is square and symmetric, representing a set of empirically
obtained similarities or other kinds of proximities between pairs of objects
(e.g., brands, sales representatives, etc.). The typical representation of such
data is spatial, where pairs of objects perceived to be highly similar plot close
to each other in some multidimensional space of relatively low dimensionality
(e.g., two or three dimensions).

However, there is a broad class of data in which the data entries ofann X n
matrix of relationships among pairs of n objects are not symmetric; that is,
where the cell entry 8,.j #* Sj,- fori, j=1,2,...,n; i j. Examples include:

® The estimated probability of a consumer switching to brand j, given that
brand i was bought on the last purchase occasion.

® The frequency with which brand j is incorrectly perceived to be brand i,
in a tachistoscopic test of new package designs.

® Trade flows between countries and input/output distribution flows be-
tween industries.

@ The subjective likelihood that subjects believe that a person has trait j,
given that the person is described as having trait i.

® One’s preference for brand j, given that one has already obtained his /her
first choice, brand i.

Other examples could be mentioned as well. Suffice it to say that the
collection of asymmetric data is a common phenomenon in marketing re-
search and in the behavioral sciences generally.

Until quite recently, asymmetric data were usually treated as something of a
nuisance. Such data were either to be avoided at the outset, if possible, or
otherwise “symmetrized” in some way. Various procedures were used (includ-
ing additive or multiplicative adjustments of rows and columns) to bring
about the desired matrix symmetry if the asymmetries were assumed to be due
to various kinds of response biases (e.g., Levin and Brown, 1979). In cases
where the asymmetries were believed to reflect only noise, the easiest proce-
dure was simply to average the counterpart off-diagonal proximity entries, §;
and §;.

In still other cases—assuming that the asymmetric character of the data was
to be preserved—rows and columns were treated as separate points,and an
unfolding-type of MDS analysis was carried out, leading to a spatial configu-
ration of 2n points (Gower, 1977; Carroll and Arabie, 1980). This required
that separate row and column identities be distinguished and interpretation of
the configuration often tended to be difficult.

Over the last few years or so, researchers in psychometrics have developed
new approaches to the analysis of intrinsically asymmetric data (Chino, 1978;
Constantine and Gower, 1978; Gower, 1977; Tobler, 1979; Young, 1974; for a
more detailed review see Harshman, 1982a). One family of these models,
developed by the first author (Harshman, 1978; 1982a), is DEDICOM (DE-
composition into Dlrectional COMponents). Unlike previous attempts to
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adapt distance-like methods of MDS to asymmetric relationships, DEDICOM
takes a nonspatial approach at the outset (although subsequent spatial repre-
sentation is possible).

The purpose of this paper is to describe the simplest member of the
DEDICOM family, the single domain, two-way DEDICOM model for square
data sets, and discuss its application to two illustrative problems in marketing
research. (For more extensive technical discussion of the entire family of
DEDICOM models, see Harshman, 1978; 1982a; 1982b.) We first discuss the
formal characteristics of the single domain model in the context of an applied
problem in the analysis of free associations data. Following this, the model is
applied to a set of brand switching data obtained in an actual marketing
research study. The paper concludes with a discussion of some future method-
ological developments, and other kinds of applications where the model may
prove useful. A technical appendix describes ways in which various versions of
the basic model are solved.

The Single Domain DEDICOM Model

To motivate discussion, consider the small 8 X 8 matrix of free associations
shown in Table 1. These data are drawn from a larger table, originally
published in the Journal of Marketing Research (Green, Wind, and Jain, 1973).
The table entries represent the frequencies (across people) with which each
column phrase was evoked in the minds of respondents when the interviewer
called out (in randomized order) each of the eight row phrases. All data are
based on the responses of 84 female users of hair shampoo, who were 19 to 30
years of age. Multiple responses for each respondent were recorded.

The first thing to be noticed about Table 1 is that the entries are not
symmetric; for example, “Body” evokes “Fullness” 44 times, while “Fullness”
evokes “Body” only 22 times. It turns out that these asymmetries are more
systematic than would be expected on the basis of chance. With DEDICOM
we will be able to fit both a symmetric (factor analytic or MDS model) and a
more general asymmetric model to the same data, and compare the results. A

TABLE 1
Word Association Frequencies
Evoked Phrase
Stimulus Holds Not
Phrase Body Fullness Set Bouncy Limp Manageable Zesty Natural

Body — 44 5 23 1 19 1 3
Fullness 22 — 5 3 1 9 1 2
Holds Set 17 21 — 5 0 17 0 S
Bouncy 15 12 3 — 1 5 0 14
Not Limp 28 27 4 18 — 4 1 7
Manageable 17 13 11 2 0 — 0 3
Zesty 7 9 2 22 0 4 — 13
Natwral 4 _9 1 2 0 a R
Total 110 135 31 75 3 65 4 47
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statistical test (to be described below) indicates that the asymmetric model
provides a significantly (a =.05) bigger improvement in fit than would be
expected if the directions of the asymmetries were randomly determined.

In order to keep our example simple, let us assume that there are “really”
only two different aspects of shampoo benefits which influence associations
among the eight phrases. Each of the eight evoking and evoked phrases can
then be described in terms of two numbers, which show how strongly the
phrase is related to each underlying aspect. For example, (to anticipate the
results actually obtained with these data) the two aspects might be expressed
as THICKNESS and VIGOR. Phrases such as “Body” and “Fullness” would
probably show high association with THICKNESS while “Not Limp” and
“Zesty” might show high association with VIGOR. DEDICOM teases out
such underlying aspects in a manner similar to factor analysis or MDS. But
DEDICOM carries the analysis further. The two aspects, THICKNESS and
VIGOR, are themselves assumed to show associative relationships, and these
“latent” associative relationships may be asymmetric, just as the observed or
“surface” associations are asymmetric.

DEDICOM provides us with a table describing the (usually asymmetric)
associative relationships among these underlying aspects (dimensions or
types), and shows us how to build up the original (observed) associations from
linear combinations of the latent associations among the aspects. Unlike
MDS, where observed non-spatial relationships are modeled in terms of
underlying spatial relationships, DEDICOM assumes that both the observed
and the latent relationships are of the same kind. The usefulness of the
solution comes from the fact that the latent relationships are much simpler,
and reveal the patterns present in the surface relationships.

‘While the aspects of phrases uncovered by the analysis can be treated as
dimensions, and plotted so as to express relationships among phrases geomet-
rically, such a plot reveals only part of the story. It shows the similarity of
patterns for different stimuli, but not the important asymmetries. To under-
stand how asymmetries are represented, we consider the algebra of the model.

The Algebra of the Single Domain DEDICOM Model

Let X denote the original n X n matrix of asymmetric relationships. A
general entry of X, denoted as x;, represents the directed relationship of
object i to object j. The single domain DEDICOM model can be written as:

X = ARA’ +E. (1)

In this DEDICOM model, A denotes an n X g (vertical) matrix of weights of
the n observed objects on a relatively few (¢ < n) aspects or types of objects.
R, of order g X g, is usually an asymmetric matrix, giving the directional
relationships among the basic types. The matrix A’ is the ¢ X n transpose of A,
while E is simply a matrix of error terms.
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We might compare this model to familiar factor analytic and MDS models.
The A matrix is analogous to the factor loading matrix in factor analysis, and
to the stimulus projection matrix in multidimensional scaling. It relates the
observed entities (e.g., the phrases) to the latent entities (e.g., the aspects of
phrases). The DEDICOM R matrix might be considered analogous to ®, the
matrix of correlations among factors in oblique factor analysis, or to the
cosines of angles among dimensions in multidimensional scaling with oblique
perceptual axes. The central matrix in all these cases describes the interrela-
tions among the latent entities. DEDICOM generalizes factor analysis and
MDS by allowing these latent relationships to be asymmetric. In fact, DEDI-
COM analysis reduces to factor analysis when the input data are symmetric
(covariance or correlation-like) and the option to ignore the diagonal is used.
(It reduces to principal components analysis if such data are input and the
option to ignore the diagonal is not used.) Similarly, DEDICOM reduces to
metric multidimentional scaling if the data are symmetric and are originally
like Euclidean distances, but are preprocessed to become scalar product-like
(see Harshman, 1982a). Conceptually, however, DEDICOM might be consid-
ered to diverge substantially from factor analysis and MDS, since it does not
describe the observed nonspatial relations in terms of a spatial analog but,
instead, describes the observed nonspatial relations in terms of latent nonspa-
tial relations of the same kind as the surface relations.

The interesting feature of the single domain DEDICOM model (which is
the only version that we shall employ in this article) is that while R is allowed
to become asymmetric, the left and right hand A matrices are still required to
be identical. This provides a description of the data in terms of asymmetric
relations among a single set of things, rather than envisioning a different set of
aspects for the eight words in their “evoking” role than they have in their
“evoked” role. This second possible approach, where the left A may differ
from the right A, is called the dual domain DEDICOM model, and is
discussed in Harshman (1982a).!

Like factor analysis and MDS, DEDICOM requires that the user refer to
some external criterion to determine the desired dimensionality (the number
of columns of A and rows and columns of R). As in MDS, we examine
fit-vs.-dimensionality curves to look for an “elbow,” after which fit values
only increase gradually. We also consider the interpretability of the successive
solutions. (Significance tests for the fit increases due to each added dimension
are also being explored.)

Our first exampe (Table 1), involves a very small data set, containing only
56 distinct values. (The diagonals were undefined, and will be ignored in the
analysis by estimating their value from the model in an iterative procedure,
identical to that sometimes used for communality estimation in factor analy-
sis.) Given the small number of data values, we are reluctant to extract more
than two dimensions. The fit-vs.-dimensionality curve for these data is given

'The dual domain model is also described briefly in the technical Appendix of this article.
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FiGure 1. Fit Versus Dimensionality—Word Association Frequencies

by the solid line in Figure 1. (The dashed line represents fit values obtained
with a symmetric model, and will be discussed later.) The elbow at two
dimensions suggests that there are only two major dimensions, although there
may be a suggestion of a third dimension. To keep this first example simple,
we decide to focus on the two-dimensional solution.

Possible Transformations

Before we can determine specific numerical values for the A and R matrices
in Equation (1), there are several indeterminacies of scale and “rotation”
which need to be resolved. Like factor analysis and MDS, DEDICOM
dimensions can be linearly transformed into alternative dimensions with no
loss of fit to the data. In general, if T is any nonsmgular q by q transformation
matrix, we can define an alternative A matrix, A , by letting A = AT and de-
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fining the associated R matrix R as T"'RT'~'. Which T we select can depend
on which perspective we wish to take toward the interpretation of A and R.
Although in general we might like to seek some kind of approximate simple
structure for the columns of A, this can be done in different ways, correspond-
ing roughly to different orthogonal or oblique rotation criteria in factor
analysis.

In this article, we will adopt as standard a procedure which applies
VARIMAX to the columns of A after they have been scaled to have equal
sums of squares; this keeps the columns of A mutually orthogonal. (This
columnwise orthogonality is not to be confused with orthogonality of the
dimensions in the space spanned by A; “rotating” A so that the columns
remain orthogonal produces solutions which are usually oblique in the factor-
analytic sense, i.e., the matrix of factor intercorrelations—or its analog,
R—has fairly large off-diagonal elements.)

But even after deciding on the conventions used to determine the orienta-
tion of the axes, a further decision needs to be made concerning the scale of
the A and R matrices. For example, when the data to be predicted contain
large values, as here, either A or R (or both) must contain large entries to
predict these observed values. One can standardize R to some small scale (e.g.,
unit sums of squares) and let A contain large entries, or standardize A (e.g., to
have columns whose entries sum to 1.0) and let the entries in R be large to
predict the observed values. In either case, we will have a solution which in
some respect looks different from what we are used to seeing in the factor
analysis of correlations, or the (analog) multi-dimensional scaling of scalar
products. (A similar problem arises when one does factor analysis of covari-
ances, unless the covariances are standardized, i.e., turned into correlations.)

In DEDICOM, several different options are available for scaling A and R in
various ways. When R is standardized (and there are several ways to do this),
we gain the benefit of being able to compare across the columns of A to see
the relative sizes of the contributions that different dimensions make to a
given stimulus. When the columns of A are standardized, we lose this simple
comparability across columns of A, but we gain a benefit which, for our own
current purpose, is even greater. The R matrix can then be interpreted as
expressing relationships among the dimensions in the same units as the
original data. That is, the R matrix can be interpreted as a matrix of the same
kind as the original data matrix X, but describing the relations among the
latent aspects of the phrases, rather than the phrases themselves. (For a
complete discussion of scale and rotation in DEDICOM solutions, see
Harshman, 1982b.)

In the analyses presented in this article, we have adopted the convention
that the columns of A are standardized so that they sum to 1.0. This is feasible
because we are dealing with data which contain all positive values, and our
columns of A will contain mostly positive entries. With other data, we might
adopt the convention that the sum of squares for each column of A sums to
1.0, which is obviously feasible regardless of the sign pattern of the data or of
the entries in A.
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When we adopt the convention that the column sums of first powers of
entries equal 1.0, we will obtain entries in A that are smaller than those usually
found in factor analysis and MDS. We should remember that it is the relative
size of an entry, compared to other entries in the same column, which we must
evaluate in deciding which loadings are “large.” If we choose to think of each
dimension as an aspect, or perhaps a “fuzzy cluster” of the observed phrases,
then the loading which occurs in a given column represents the proportion of
the total influence or effects of the aspect or cluster which is attributable to
that particular phrase. In cluster terms, it is the proportion of the total cluster
that is “occupied by” the phrase in question. When we have several different
phrases participating in a given cluster, naturally no one phrase will usually
occupy more than a small proportion of the cluster. Instead of looking for
loadings greater than 0.3, as is traditional in factor analysis, we might look for
numbers greater than (1.5/N) or (2/N) where N is the number of rows in A.
Such entries would be more than 1.5 or 2 times the mean loading for that
column.

When the columns of A are standardized to have sums equal to 1.0, then the
R matrix can be thought of as a compressed or miniature version of the
original X matrix. The sum of all the elements in R is equal to the sum of all
the elements in X (the part of X fit by the model). This is easily proven, since

S34=33 [z 2] S3nSa,Sa, @
i i § st i Jj
and since Y),a;, = 1.0 and > ;4 = 1.0 by our adopted convention, then:

ZZXV—EZ r(1.0)(1.0) = 2 37, ®)

Furthermore, the sum of all the contributions to X arising from the relation-
ship of aspect or cluster s to aspect or cluster ¢ can be written as:

2 z (%;duetos—>1) = Z Za,srs,aj, S,z a,-sz a=r,. 4)
] i i J

Hence, each element of R gives the sum of the influence acting from cluster or
aspect s to cluster or aspect ¢.

Analysis of the Word Associations Data

A two-dimensional DEDICOM analysis of the shampoo word association
data is presented in Panel A of Table 2. The A matrix has been rotated by
VARIMAX approximation to simple structure, keeping the columns of A
orthonormal, and then the columns of A have been scaled to have sums of 1.0.
The first column might be interpreted as representing THICKNESS of hair,
since the phrases “Body” and “Fullness” have high loadings. The second
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TABLE 2
A and R Matrices from the Two- Dimensional Solutions for the Word Associations Data
Panel A Panel B
Asymmetric DEDICOM Model Symmetric (Factor Analytic) Model
Dimension Dimension
1 2 1 2
(THICK- (THICK-

A MATRIX NESS) (VIGOR) A MATRIX NESS) (BOUNCY)
1 Body 299 252 1 Body 305 .081
2 Fullness 355 —.158 2 Fullness 286 —.071
3 Holds Set .041 213 3 Holds Set 134 —.064
4 Bouncy 172 .004 4 Bouncy .002 647
5 Not Limp —.048 420 5 Not Limp 097 096
6 Manageable 150 .013 6 Manageable 154 —.063
7 Zesty —.043 248 7T Zesty —.002 224
8 Natural .074 .010 8 Natural .022 151

R MATRIX R MATRIX
1 248 44 1 372 68
2 216 24 2 68 77

column might be labeled VIGOR, since “Not Limp” has a high loading and
“Zesty” and “Holds Set” also have sizable loadings. We should also note that
“Body” has a high loading on this dimension, suggesting that “Body” has two
different aspects of meaning. Weaker loadings can also be interpreted, al-
though this should be done with caution since they represent less overlap of
meaning. For example, the phrases “Bouncy” and “Manageable” seem pri-
marily related to THICKNESS, but quite a bit of their meaning apparently
resides outside these two dimensions (or they are generally less effective as
stimuli) since they have smaller loadings overall. If we are to interpret the
columns of A as “fuzzy clusters” then we must consider them ‘“additive”
clusters (in the sense defined by Carroll and Arabie, 1980). That is, a given
object can participate in more than a single cluster. The phrase “Body” seems
to be related to both THICKNESS and VIGOR. It contributes 29.9% of the
effects attributable to THICKNESS and 25.5% of those attributable to
VIGOR. The phrase “Fullness” also has loadings in both columns, but has a
negative loading in the second column, indicating that it is associated with less
VIGOR rather than more VIGOR. The actual size of these effects, however,
depends on whether one considers the ability of the two aspects (or clusters) to
evoke responses, vs. the tendency of the two aspects (or clusters) to be evoked
as responses. The R matrix reveals that both clusters are almost equally potent
as elicitors but THICKNESS occurs much more often than VIGOR as an
evoked response.

The R matrix in Panel A of Table 2 can be interpreted as giving the
frequency with which each of the aspects or clusters evokes each of the other
aspects or clusters, and themselves. We can imagine a hypothetical experiment
wherein each of the eight stimulus phrases was replaced by the stimuli
THICKNESS or VIGOR (or some combination of the two), and the 84 users

T e
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of shampoo were instructed to respond with either THICKNESS OR VIGOR
(or some combination of the two). The entries in the R matrix represent the
frequencies with which each stimulus is predicted to evoke itself or the other
stimulus. The sum of the entries in R is 532. This equals the sum of the
predicted frequencies of association between the original phrases, as given by
X. Thus, R breaks the total pattern of associations into four additive compo-
nents, each arising from the relation of one cluster or aspect to the other
cluster or aspect (or to itself). (In one sense our hypothetical experiment is a
bit misleading; the diagonal cells of R are better interpreted as the strength of
association among members of the same cluster, or the strength of association
arising from a stimulus and response sharing the same aspect of meaning,
rather than in terms of things eliciting themselves.)

Because the entries in R represent summed numbers of associations among
clusters or composites of stimuli, they are considerably larger than the
individual entries in X. We might try to reduce R to more familiar size by
noting that each of the clusters or aspects embraces roughly half the stimuli.
So we might surmise that the frequencies in R represent composites of roughly
four things, and hence should be divided by four to restore familiar-size row
sums. When this is done, we obtain:

62 | 11
R=
54| 6

This reduces our frequencies appropriately so that now we have roughly
comparable row sums to the raw data. However, the columns have also been
compressed from 8 to 2, so in order to get cell frequencies on the same scale as
in the raw data; we should divide by 4 an additional time, giving 15, 3, 14, 2
as cell frequencies.

We note that there is a large asymmetry in R. Words from the THICK-
NESS cluster elicit words from the VIGOR cluster only 44 times, where
VIGOR elicits THICKNESS 216 times. This striking asymmetry reflects
observed asymmetries in the data. (Compare, for example, how often “Not
Limp” elicits “Body” vs. “Body” eliciting “Not Limp.”) In general, we see that
words in the VIGOR cluster evoke both VIGOR and THICKNESS associa-
tions but do not get evoked (even by members of the same cluster). This could
be useful information for someone writing advertising copy. It might, for
example, suggest the importance of stating VIGOR-type benefits explicitly,
while THICKNESS could often be simply implied.

Individual Data Points

Further insight into the model can be gained by considering how individual
data points are represented. Equation (1) can be written in scalar form as:

9 49
=2 X ar.a e+ )

i=1j=1
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We can either interpret this expression in cluster terms, or in aspect (dimen-
sional) terms. In cluster terms, a;, is the proportion of cluster s identified with
manifest phrase i, r, is the total number of associations in the data arising
from cluster s stimuli evoking cluster ¢ responses, and a;, is the proportion of
cluster ¢ identified with manifest phrase j. In aspect terms, a;; is the proportion
of the total associations involving aspect s which can be attributed to manifest
phrase i, r, is the total number of associations in the data that can be
attributed to the s-aspect of the stimulus evoking the z-aspect of the response,
and g, is the proportion of the total number of associations involving aspect ¢
which can be attributed to manifest phrase j.

In either case, our understanding of the predicted frequency for x; is
basically the same. The degree to which phrase i evokes phrase j entails the
sum of ¢g*> components (in this case four components), where each component
is a triple product of the kind shown in Equation (5). Each triple product
expresses a directional link between an aspect of i and an aspect of j. (In
cluster terms, each product expresses a directional link arising from the
participation of i in a certain cluster and the participation of j in the same or
some other cluster.)

For example, the predicted extent to which “Body” evokes “Not Limp” is
the sum of how much each of the two aspects in “Body” evokes each of the
two aspects in “Not Limp”: (0.299) (248) (—0.048) + (0.299) (44) (0.420) +
(0.252) (216) (—0.048) + (0.252) (24) (0.420). This equals (—3.7) + (5.5) +
(—=2.7) + (2.5) or 1.3, in total. Despite round-off errors this comes close to our
observed frequency of 1. Likewise, the predicted extent to which “Not Limp”
evokes “Body” is the sum of how much each of the two aspects of “Not
Limp” evokes each of the two aspects of “Body.” These four links total 25.8, a
value not far from the observed frequency of 28.

We see that each observed association has been decomposed into (four)
directional components. These components are small in the case of the
association from “Body” to “Not Limp,” but there is one big one in the case
of “Not Limp” to “Body.” We can interpret the DEDICOM account of the
asymmetry as follows: There is little association between these words arising
from shared meaning or within-cluster bonds. This is because the two phrases
do not overlap in the aspect of THICKNESS (since “Not Limp” has virtually
none of this aspect). There is some overlap in terms of VIGOR, but this turns
out to contribute little because the “self-associations” of the VIGOR cluster
are weak (only 1/10 those of THICKNESS). Thus the associative relation
between “Body” and “Not Limp” is determined primarily by the connections
between different aspects. “Body” has primarily THICKNESS and “Not
Limp” has almost exclusively VIGOR. As the R matrix indicates, the associa-
tion from THICKNESS to VIGOR is weak, whereas the association from
VIGOR to THICKNESS is strong. Thus the association from “Body” to “Not
Limp” is weak, but from “Not Limp” to “Body” is strong.

If our data set were larger than 8 by 8, we might try to break these two
broad clusters up into finer components, by examining higher-dimensional
solutions. As we shall see with a subsequent example, one can obtain a tree
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structure similar to that provided by hierarchical clustering, which can shed
light on the clusters which emerge at any given level by reference to their
common ‘“‘ancestors” at lower-dimensional levels, and their divergent
“children” at higher-dimensional levels. We have looked at the higher-
dimensional solutions for these data, and find that in three dimensions,
“Bouncy” splits off to dominate a new dimension by itself with “Natural” and
“Zesty” only weakly related. At four dimensions, a dimension of CONTROL
emerges, which relates to “Holds Set” and “Manageable” and to a lesser
degree, to “Natural.” While this may seem like a reasonable dimension, there
is some indication that we have extracted more than the data can support,
particularly in the R matrix where a number of substantial negative entries
emerge. All told, we conclude that the higher-dimensional solutions may be
suggestive but are not adequately justified in the light of the small data set and
the fit-vs.-dimensionality curve.

Comparison with a Symmetric Model

It is interesting to compare the DEDICOM analysis which incorporates
asymmetry with one which does not, in order to assess the benefits (if any) of
the more general asymmetric model. Certain earlier versions of the program
included a capability for constraining the R matrix to be symmetric. This
results in a model which only generates symmetric predictions (i.e., X is
necessarily symmetric). The fit of this model can then be compared to the fit
of the asymmetric version.

it turns out, however, that fitting a symmetric DEDICOM to asymmetric
data gives exactly the same A, R, and X as fitting the asymmetric model to
data which have been “symmetrized” by averaging the corresponding x; and
x; entries. [This equivalence follows as a consequence of the fact that the
symmetric and skew-symmetric components of the data are orthogonal to one
another (see Harshman, 1982a).] Consequently, we can evaluate the advan-
tages of including asymmetry in the model by simply comparing a DEDI-
COM analysis of the full asymmetric data matrix with a DEDICOM analysis
of the symmetrized data. The fit-vs.-dimensionality curve for the “symmetric
model” shown in Figure 1 was obtained by fitting the general DEDICOM
model to symmetrized data, then computing the correlation between the X
(from that symmetric solution) and the original asymmetric data. This gives
the same values that would be obtained by correlating the X of a model with
R constrained to be symmetric, and the full asymmetric data, when such a
constrained model is fit to asymmetric data.

We see that there is no difference between the two models for the one-
dimensional solution. This is because the one-dimensional solution is necessar-
ily symmetric in either model. For two and higher-dimensionality solutions,
however, there is a very large difference in fit values (e.g., for two dimensions,
the symmetric model has an r? of 0.51, whereas the asymmetric model has an
r of 0.79).

In addition to comparing the fit values, it is useful to compare the solutions
obtained by the asymmetric and symmetric models. Table 2 displays the
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solutions obtained in the two-dimensional case. In the symmetric model’s A
matrix (Panel B), the first dimension resembles dimension one of the asym-
metric analysis; it also seems to stress “Fullness” and “Body,” and to a
weaker extent “Manageable.” The second dimension, however, is quite differ-
ent from its asymmetric counterpart. The phrase “Bouncy” dominates this
dimension (and no longer loads on dimension one). Dimension two also has a
weak relationship to “Zesty” and perhaps “Natural.” On the other hand, the
asymmetric DEDICOM solution placed “Bouncy” in with the other indicators
of THICKNESS, in part because the asymmetries displayed by “Bouncy” are
similar to those displayed by other indicators of THICKNESS. Since this
information is lost in the symmetric analysis, “Bouncy” appears to emerge as
a dimension of its own. (In higher-dimensional solutions, both symmetric and
asymmetric analyses show a dimension dominated by “Bouncy, ” but differ in
other aspects; such details will not, however, be discussed here.) We conclude
that the two-dimensional asymmetric solution has a more interesting and
informative interpretation.

What is “Real” and What is Not?

Having obtained an interesting DEDICOM solution for the word associa-
tions data, we would like to assess the stability and generalizability of our
results, and to determine which characteristics arise from systematic relation-
ships in the data and which are simply reflections of chance fluctuations. The
most straightforward approach to this type of evaluation is replication of the
analysis on a new sample of data. A well-designed study would anticipate the
need to test replicability, and gather enough data for two sizable split-half
samples to be constructed. This allows us informally to assess the degree to
which any conclusions we would like to draw will tend to generalize across
other respondent samples. If generalizability to new stimuli is an issue, then
splitting the stimulus set, or replication of the study with new stimuli, is called
for. Since here we are analyzing data from other sources (e.g., published
commercial studies), we are not free to collect our own replication samples;
hence we will not demonstrate this important checking procedure here.
However, such split-half checks are recommended as a powerful way of
determining, for example, how many dimensions can be extracted before a
solution becomes too unstable. Our lack of rigor here is mitigated by the fact
that our focus of attention is primarily on the comparison of symmetric and
asymmetric representations of the data, rather than the substantive conclu-
sions arising from the examples.

A question of particular importance is the “reality” of structure in the
asymmetries of a given data set. We would like to know whether the attention
which we have paid to the asymmetries is justified. Are these asymmetries
systematic, or are they simply chance fluctuations from a symmetric structure?
A method has been developed for testing the statistical significance of the
asymmetric variance fit by the DEDICOM model (Harshman, 1982a). It is
based on a comparison of the fit value obtained by the asymmetric DEDI-
COM model with the fit value obtained by the constrained symmetric
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DEDICOM model. As we have noted earlier, the DEDICOM model with
symmetric R is equivalent to the oblique factor analytic model; though we
scale A and R differently, this does not affect the structure or fit of the
obtained solution. Another way of stating our comparison is that we are
concerned with the statistical significance of the improvement in fit obtained
by going from a factor analysis of the symmetrized data to a DEDICOM
analysis of the raw data.

To test the statistical signficance of the difference in fit between the two
models, a randomization-test procedure was employed. The logic of this
procedure is described more fully in Harshman (1982a) but we summarize it
briefly here. We formulate a null hypothesis that the deviations of the data
from symmetry are due to independent random perturbations of an underly-
ing symmetric structure. The size of these perturbations may be related to the
size of the symmetric observations which they perturb, but the direction of the
perturbation is assumed to be random. According to this null hypothesis, there
is no systematic structure to the direction of the asymmetries and hence the
improved fit provided by the asymmetric DEDICOM model is simply capital-
ization on error. In other words, the fact that x; is larger (say) than x; is due
to chance, and this relation has a 50 percent probability of being reversed in a
new sample. To determine the fit values to be expected on the basis of an
asymmetric DEDICOM capitalizing on error, 19 modified versions of the data
set were constructed. In each modified version a randomly selected half of the
data entries was transposed (x; became X and vice versa, for that particular
randomly selected value of i and j). This procedure randomly scrambled the
asymmetries, while leaving the symmetric component of the data unaltered.
(With this method of scrambling, any relationship between the size of the
asymmetry and the size of the symmetric part—if there is such a relation—is
preserved; it is only the direction of the asymmetry which is randomly
scrambled.)

These 19 modified data sets were each analyzed in one to five dimensions
by the asymmetric DEDICOM model, and the obtained fit values were
compared to the 20th or unaltered version. If the unaltered version had a
higher fit value than any of the 19 versions with randomly scrambled asym-
metries, it was concluded that we had observed a relative improvement in fit
due to the use of the asymmetric model which would occur by chance 5
percent of the time or less, and hence was “statistically significant” at the 0.05
level.

The range of the 19 randomized-asymmetry fit values obtained at each
dimensionality is shown in Figure 1 by vertical bars. On the basis of these
results it is concluded that, for the word association data, the observed
improvement in fit provided by the asymmetric over the symmetric DEDI-
COM model is significant at the 0.05 level; the null hypothesis of no
systematic relationships in the direction of the asymmetries can be rejected.

Not only does this test provide evidence for systematic variation in the
asymmetries, but is also demonstrates that they are of a kind that can be fit (at
least in part) by the DEDICOM model. Thus, this approach is preferable to
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(or at least “stronger” than) simply showing that the asymmetries are non-
randomly distributed. It demonstrates that a statistically significant amount of
the asymmetric variance can be fit with a DEDICOM representation.

The Car Switching Data

Free associations data represent only one class of marketing research data
suitable for the application of DEDICOM. An additional example should
serve to show the flexiblity of the model and some of DEDICOM’s prepro-
cessing options. Each year Rogers National Research, a marketing consulting
firm in Toledo, Ohio, collects car trade-in data for a large sample (tens of
thousands) of U.S. buyers of new cars. The data are collected by mail
questionnaires asking recent buyers of new cars to indicate both the newly
purchased model and the old model (if any) disposed of at the time of
purchase. The data analyzed here consisted of 1979-model new car purchases.

The auto industry typically classifies cars into 16 segments, with the specific
(1979) models within each segment shown in Table 3. Based on the Rogers
data, a 16 X 16 brand switching matrix was prepared showing the frequency
with which any car owner in segment i switched to a new (1979 model) car in
segmentj (i, j= 1,2, ..., 16). The resulting data matrix is shown in Table 4.

The car switching frequencies of Table 4 were subjected to a DEDICOM
analysis. For comparison, a symmetric DEDICOM (factor analytic) analysis
was also performed. The resulting fit values are shown in Figure 2. A fairly
high fit value is obtained in one dimension, and since the one-dimensional
solution is necessarily symmetric, the two models naturally have the same fit
value at this dimensionality. A strong divergence occurs at two dimensions,
however, and continues thereafter up to eight dimensions. Once again, the
asymmetric model provides a considerably better fit (e.g., 7> = 0.92 vs. 0.76 in
the two-dimensional solution). The fit-vs.-dimensionality curve for the asym-
metric model suggests that there are two major dimensions, but careful
examination reveals that there are further increments for dimensions three and
four, followed by gradual increases thereafter. This suggests that a maximum
of four dimensions are present. For the symmetric model, on the other hand,
the fit-vs.-dimensionality curve shows little evidence for more than two
dimensions.

The difference between the fit values of the asymmetric and symmetric
models was tested for statistical significance by the randomization-test proce-
dure described earlier. Again, the improvement of fit obtained with the “true”
(unscrambled) asymmetries was substantially higher than any of the improve-
ments obtained in the 19 modified data sets, where the direction of the
asymmetries was randomly reflected. (The range of fits obtained with the
modified data sets is again indicated—for each dimensionality—by a bar in
Figure 2.) Consequently, we conclude that there are systematic asymmetries in
the car switching data, and that they are fit by the DEDICOM model at a
better-than-chance level, i.e., at a level that would occur with probability of
0.05 or less on the basis of chance.
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L.

Subcompact/Domestic

Bobcat
Chevette
Horizon
Monza
Omni
Pinto
Spirit
Sunbird

2. Subcompact/Captive Imports

Arrow

TABLE 3
Segment Composition of 1979 Model Cars*
6. Small Specialty /Imports . Midsize Specialty
Datsun 280ZX Cordoba
Fiat Spider 2000 Cougar XR-7
Fiat X1/9 Cutlass Supreme
Toyota Celica Grand Prix
Volkswagen Scirocco Magnum XE
Monte Carlo
7. Low Price Compact Regal
Concord Thunderbird
Fairmont
Nova . Low Price Standard
Volare Chevrolet
Ford

Champ

Colt

Colt Hatchback
Fiesta

Opel

3. Subcompact/Imports

Datsun 210
Datsun 310
Fiat 128
Honda Civic
Honda CVCC
Honda Accord
Renault LeCar
Toyota Corolla
Volkswagen Rabbit
—Gas
—Diesel

4. Small Specialty /Domestic

Camaro
Capri
Corvette
Firebird
Horizon TC-3
Mustang
Omni 024
Pacer
Skyhawk
Starfire

5. Small Specialty /

Captive Imports

Challenger
Sapporo

8. Medium Price Compact

Aspen
Omega
Phoenix
Skylark
Zephyr

9. Import Compact
Audi Fox
Datsun 510
Fiat Brava
Toyota Corona
Volkswagen Dasher

10. Midsize Domestic
Century
Cougar
Cutlass Salon
Diplomat
Granada
LeBaron
LeMans
LTDII
Malibu
Monarch

11. Midsize Imports
AUDI 5000
BMW 3201
Datsun 810
Toyota Cressida
Volvo 242 /244
Volvo 245 /265
Volvo 264

. Medium Price Standard

Buick
Chrysler
Dodge
Mercury
Oldsmobile
Pontiac

. Luxury Domestic

Cadillac

El Dorado

Lincoln Continental
Mark V

Riviera

Seville

Toronado
Versailles

16. Luxury Import

BMW 5281
BMW 7331
BMW 633CSI
Mercedes-Benz 240D
Mercedes-Benz 300D
Mercedes-Benz 300SD
Mercedes-Benz
280E/SE
Mercedes-Benz
450 SEL
Mercedes-Benz
450SL/SLC
Porsche 911
Porsche 924

“SOURCE: Rogers National Research, Toledo, Ohio.
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FIGURe 2. Fit Versus Dimensionality—Car Switching Data

Preliminary Interpretation of the Asymmetric Analysis

Examination of the A and R matrices for the one through five-dimensional
solutions reveals that all of the asymmetric solutions are interpretable, up
through four dimensions, further confirming our estimate of the “correct”
dimensionality as four. The A and R matrices from the four-dimensional
solution are shown in Table 5. This solution can be interpreted as breaking the
automobile segments into four aspects: PLAIN LARGE-MIDSIZE, SPE-
CIALTY, FANCY LARGE, and SMALL.

The Midsize Domestic, with a weight of 0.523, most closely resembles the
PLAIN LARGE-MIDSIZE, the Midsize Specialty (0.898) appears to strongly
resemble the SPECIALTY type, the Medium-Price Standard (0.699) appears
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TABLE 5
A and R Matrices from the Four- Dimensional Solution for the Car Switching Data
Dimension
1 2 3 4
(PLAIN

A LARGE- (FANCY
MATRIX MIDSIZE) (SPECIALTY) LARGE) (SMALL)
1 SUBD —.026 —.027 023 318
2 SUBC 012 -.017 —.002 .028
3 SUBI —.058 016 032 199
4 SMAD 015 221 —.078 157
5 SMAC —.000 .000 -.000 .001
6 SMAI .006 046 —-.023 026
7 COML .148 —-.130 —-.049 177
8 COMM 079 -.050 015 058
9 .COMI 012 —-.035 012 .031
10 MIDD .523 037 —-.015 —.002
11 MIDI 021 —.004 .000 .009
12 MIDS 012 898 .001 —.006
13 STDL .336 —.015 .101 -.031
14 STDM .010 —.002 699 .002
15 LUXD —.086 058 270 031
16 LUXI -.003 004 013 .002

R
MATRIX
1 161468 120680 89103 226400
2 22508 71778 31029 49225
3 51138 46755 87406 80910
4 83069 74248 10940 234614

to most strongly resemble the FANCY LARGE type, and finally the Subcom-
pact Domestic (0.318) appears to most strongly resemble the SMALL type.
But we have a number of puzzling features associated with this solution. Why
are so many segments which one would expect to load on a particular aspect
failing to do so? For example, why do the Subcompact Captive Import, the
Small Specialty /Captive Import, and the Small Specialty Import fail to load
on SMALL or on any other dimension? We see, in fact, that Small Specialty /
Captive Import has a zero loading (to three decimal places) on three dimen-
sions and only a 0.001 loading on the fourth. It appears that there is an
additional source of variation in the size of the loadings which needs to be
taken into account.

Dealing with Differences in Scale

The car switching data present a good example of a problem which is found
in many data sets: large differences between data sources and in the size of
entries. In the car switching data, for example, some of the 16 segments
represent car types which have a large market share, and hence have large
switch-from and swtich-to frequencies. Midsize Domestic is such a segment,
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with a row sum representing 262,000 switches from this category, and a
column sum representing 188,000 switches to this category. On the other hand,
for segments with a small market share, there are few switches either to or
from the category. The most extreme example is Small Specialty/Captive
Import which has a switch-from row sum of only 339 and a switch-to column
sum of only 612.

For some data, one might want to retain differences in overall row and
column sums, because such differences are presumed to reflect the same kind
of influences as those which show differences within each row and column.
With the word-associations data, there were modest differences in the row-
plus-column sums for different levels of i, but these were presumed to be
meaningful because they arose from the differences in associative strength
themselves. All the word-association stimuli had been presented an equal
number of times, but some stimuli elicited many responses while other stimuli
did not. Thus, differences in the number of associations involving each object
might be interpreted as reflecting the strength of involvement of the object in
the associative network under study.

In contrast, the large difference in level sums (row-plus-column sums) in the
car switching data would seem to be due primarily to extraneous factors, such
as market share. These overall differences are not of the same kind as the
within-row differences that reflect factors of interchangeability and relative
segment attractiveness to different kinds of buyers. Hence, we would like to
remove the extraneous size differences in order to more clearly reveal the
structural factors of interest.

The problem of unequal scales for different segments is analogous to
problems which arise in factor analysis or cluster analysis because of unequal
scales of the variables. For example, some of the variables might be measured
in incommensurate units, such as milligrams of hormone per liter of blood vs.
the number of correct responses on a 100-item test. In factor analysis, these
differences in scale are often considered irrelevant, and are removed by
standardization of the variances of the variables (e.g., by using correlation
coefficients which implicitly set the variance of all variables to unity). We
would like to have a similar way to remove irrelevant differences in scale from
our two-way matrix of relationships.

There are two strategies which can be employed (and which are imple-
mented as alternative DEDICOM options) in order to adjust the analysis for
differences in overall row and column scale. One is to apply appropriate
adjustments to the A matrix after analysis of the unadjusted data, and the
other is to apply rescaling adjustments to the data before analysis. With
error-free data that fit the model, both approaches have the same result.
However, with fallible real data, the two approaches lead to different results
because they differ in the implied weighting of errors for small vs. large-scale
rows and columns. Here we focus on the method that adjusts the A matrix.
Later, we briefly discuss the second method and the results obtained from it.
However, before either of these methods is applied, a set of row or column
scale factors is estimated by performing an iterative rescaling transformation
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on a duplicate copy of the data (generated internally). This transformation is
designed to remove scale inequalities among different objects. Since the single
domain DEDICOM model assumes the same identity for row i as for column
i (i.e. the row and the column correspond to the same entity), we seek a single
scale adjustment that is applied to both the ith row and the ith column. While
there are well-known techniques for equating the sums of rows and columns of
a two-way table, when these methods are applied to asymmetric data, they will
involve different scale multipliers applied to the rows than are applied to the
columns. Techniques did not previously exist for equating the overall scale of
the ith (row plus column) total across all n values of i, by means of scale
adjustments applied equally (symmetrically) to the rows and columns.

Such a technique has been developed for DEDICOM and is discussed in
more detail elsewhere (Harshman, 1982a). Suffice it to say here that an
iterative procedure successively adjusts the rows and columns of the data
matrix X until the mean entry (or equivalently, the sum of all entries) for each
segment is equal (i.e., the sum for row i plus the sum for column i equals the
sum for row j plus the sum for column j, for all i, j). As a coproduct of this
process a single scale factor is determined for each segment. If the scale-
adjusted X matrix is called X and the segment scale multipliers are assembled
into a diagonal matrix D, then the original data are decomposed into a
scale-free version X and a diagonal scale-factors matrix D, so that:

X = DXD (6)
and it is the case that:
il - .
Xi= 5 ng (% + X;) =k (foralli). Q)

(When data are being analyzed in which the diagonal is ignored, as in this
article, the data rescaling is based on sums of off-diagonal cells only.) The
value of k is usually set at the grand mean of the unadjusted data (or grand
mean, ignoring the diagonal cells). Alternatively, similar adjustment proce-
dures are available which equate sums of squares for segments; for the data
considered here, however, equalization of sums was thought more appropriate.

Incorporating the Scale Adjustments in the A Matrix

In the basic DEDICOM single domain model of Equation (1), it is assumed
that extraneous scale differences among rows and columns do not exist. Any
differences in row and column sums for one stimulus or segment, compared to
another, are assumed to be meaningful and to arise from the same structural
processes as those which generate within-column and within-row variations (as
noted earlier). When this is not the case, A must fulfill two functions: it must
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express the associational relationships (i.e., the different degrees of relation-
ship between a given cluster or aspect and the various segments) by means of
different sized loadings in a given column and it must also reflect any
extraneous differences in overall segment size by overall differences in the size
of all loadings in a given row. When these two different sources of variation
are present in the data, it is useful to split A into two component parts, one of
which represents the scale factor differences for different segments and the
other which represents structural relations among segments. We do this by
letting:

A=DA (®)

where D is the diagonal matrix of scale factors for the_segments which was
estimated by the iterative process described earlier, and A = D~ 'A. By explic-
itly representing scale differences with the matrix D, we leave A free to
represent the structural relationships present independently of scale. A can be
thought of as giving the relationships among the segments in a data set from
which differences in scale have been removed. If we let:

X = ARA’ +E ©)

then, substituting (DX) for A, we obtain:
X = (DA)R(DA) + E (10)

X = DARAD +E (11)

Ignoring, for the moment, the effects of our error matrix E, we can informally
say that:

D~ 'XD~' = ARA". (12)

Since D™'XD~ ! = 5(, our adjusted X with the scale differences removed, we
obtain (loosely speaking):

S
I
>l
§n

(13)
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In other words, A provides a description of_the structural relationships with
scale differences removed. Now since A = DA and

A=D"'A (14

we simply remove the scale effects from A by premultiplying it by the inverse
of the diagonal scale factor matrix.

But after this premultiplication, many desirable columnar properties of A
are likely to be altered. If the columns had previously been orthogonal, it is
unlikely that they would remain so, and if they had been rotated to simple
structure, or its VARIMAX approximation, this would probably no longer be
the case. Consequently, we might want to subject this row-rescaled A to
column transformations which restore orthogonality and which would also
standardize the sums (or sums of squares) of the column loadings as required
by whichever scaling convention we had adopted. (This can be accomplished
by performing Gram-Schmidt orthonormalization of the columns of A, fol-
lowed by VARIMAX rotation, and then a rescaling of the columns to the
desired sum or sum-of-squares.) If these column operations are represented by
the g by g transformation matrix T, then the new matrix of loadings for the
structural part of the relationships can be written as AT. Let us call this matrix
A. This is the matrix that we wish o interpret in order to gain insight into the
different aspects or clusters underlying the switching patterns in X. The A
matrix is related to our original A by:

A =DAT. (15)

To complete our enriched model for X, we need to obtain the appropriate R
matrix to go with DA We saw earlier that (DA) could use our original R
unaltered, since (DA) DD 'A)=A. But A has been subjected to the
column adjustments represented by T. Hence the inverse adjustments need to
be applied to R. A further complication arises because of our need to
standardize the size of the columns of (DA) in order for our new R matrix to
have elements which sum to the same total as the elements in X (or have some
other desired property). To achieve this, we first set the columns of (DA) to
have sums of one. We do this with a ¢ by g diagonal matrix C whose diagonal
elements are reciprocals of the column sums of (DA) or equivalently, the
column sums of AT. We can then let:

R=C'T"'RT'-'C™L (16)

To complete this discussion, we can obtain an A to go with R. We let A
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represent the version of A which incorporates all scale effects, i.e., if we let:
A =DAC = ATC, (17)

then we can write a simple expression for the original data in terms of A and
R, ie.,

X = ARA’ + E. (18)

This representation differs only by “rotation” (or oblique transformation)
from our original ARA’. Whereas the original A had columns with maximal
(VARIMAX) simple structure, just as they have appeared in A, the A matrix
has columns oriented in a slightly different set of directions in the space
spanned by A. These revised directions are chosen so that the A part of A will
have maximal VARIMAX simple structure. This provides a maximally inter-
pretable description of the clusters as defined in their “pure” associational
structure (with scale differences removed). Since A = DAC, we can expand the
expression for X, given above, into the interpretable components:

X = (DAC)R(DAC) + E (19)

This provides a representation in terms of four different matrices: D gives
the scale factors for the different segments in X (i.e., the overall size differ-
ences for the different levels of X) and A gives the relations between different
segments in terms of shared aspects or cluster membership, independent of
size of the segments. C gives an adjustment in the overall size of loadings for
each cluster or aspect, so that their loadings have the proper sum (or sum of
squares) after the various cluster members have been shrunk or expanded
according to their scale factors. (One might say that C~! represents the effect
of segment scale factors on the relative “impact” of the clusters.) Finally, if the
earlier-selected scaling convention is adopted which makes the columns of A
sum to 1.0, the elements of R represent the number of switches among the
underlying clusters or aspects, i.e., the switches among the clusters which are
presented in “pure” form by A and in a form with scale differences incorpo-
rated by DAC or A.

‘

Application of the After-Analysis Approach

The iterative method for estimation of scale differences was applied to the
car switching data of Table 4; the segment scale factors d;, and the rescaling
coefficients (1/d,) are given in Table 6. These are the diagonal values of D
and D™, and if each entry in the original data matrix is multiplied by its

corresponding row and column rescaling value (i.e., %; = x;1/d;1/d), then
the rescaled data would show the same total number of sw1tches (row sum
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TABLE 6

Segment Scale Factors (The Diagonals of D) and Rescaling Coefficients
(The Diagonals of D™") for the Car Switching Data

Segment Scale Factors Rescaling Coefficients
1 1.504 0.665
2 0.213 4.686
3 1.393 0.718
4 1.599 0.626
5 0.005 182.030
6 0.377 2.650
7 1.119 0.894
8 0.635 1.575
9 0.258 3.875

10 2.608 0.383
11 0.277 3.613
12 1.998 0.500
13 1.386 0.722
14 1.526 0.655
15 0.699 1431
16 0.106 9.440

plus column sum) for each segment. Because our analysis of Table 4 will
ignore the diagonal values (we suspect that special considerations of “loyalty”
make these non-comparable to the rest of the data), the rescaling of the data is
based on sums of off-diagonal cells only.

A rescaled A matrix was produced by multiplying each row of the original
A matrix by the corresponding rescaling coefficient, then orthonormalizing
and re-rotating the resulting matrix to VARIMAX simple structure in order to
adjust for any deviations from the orthonormal simple structure produced by
the row adjustments. The resulting A matrix is shown in Table 7. Although the
same basic four dimensions are apparent, their interpretation is much clearer.
Note, for example, that Small Specialty/Domestic now loads on the SPE-
CIALTY dimension (0.225). The segment Small Specialty/Captive Import,
which loaded on nothing in the non-rescaled A matrix, now is found to load
0.143 primarily on the SMALL dimension (although there is a moderate
loading of 0.101 on SPECIALTY). At the same time, some segments which
previously had inflated loadings because of their very large overall scale, or
market share, are placed in better perspective in this rescaled solution. The
Midsize Domestic, which previously dominated the PLAIN LARGE-
MIDSIZE cluster or dimension, now is reduced to being the second largest
segment, with a loading of 0.312. The largest loading for this dimension/
cluster is now 0.398 for Low-Priced Standard, which seems appropriate given
the overall interpretation of this dimension.

Interpretation of DEDICOM Dimensions as Clusters

It is useful to consider more carefully how the columns of A might be
thought of as identifying clusters of related things, much in the manner of
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. TABLE 7
A (Rescaled A) and Its Associated R Matrix from the Four- Dimensional Solution for the
Car Switching Data
Dimension
1 2 3 4
(PLAIN
A LARGE- (FANCY
MATRIX MIDSIZE) (SPECIALTY) LARGE) (SMALL)
1 SUBD —.074 —.004 .035 172
2 SUBC .053 -.079 —.009 109
3 SUBI —-.092 .023 041 115
4 SMAD —-.013 225 —.040 .081
5 SMAC —.067 .101 —.039 .143
6 SMAI .003 199 —.055 .057
7 COML 156 —.108 —.049 131
8 COMM 175 —.069 .017 075
9 COMI .046 —.176 .050 .098
10 MIDD 312 .082 —.028 .000
11 MIDI 111 .005 —.005 .025
12 MIDS .028 .669 011 —.004
13 STDL .398 .050 .047 —.020
14 STDM .103 —.031 471 —-.014
15 LUXD —.120 067 471 .022
16 LUXI —.017 .047 136 .011
R
MATRIX
1 150676 133409 87244 220712
2 9487 105856 38157 42550
3 35892 45205 76584 57338
4 84511 95245 18064 240341

cluster analysis. Although DEDICOM decomposes relationships into latent
aspects and hence has its strongest kinship with factor analysis and MDS, it
frequently happens that the aspects identified by an analysis can be taken to
define a rough partition of the original stimuli or objects (in this case, the
original segments of the automobile market) into a few clusters. By choosing a
simple structure rotation with orthogonal columns of A, we encourage the
model to provide a solution in this form (see Harris and Kaiser, 1964). When
a “rotation” of the solution can be found that shows each stimulus or object
as loading strongly on only one aspect, then we can interpret the DEDICOM
solution as providing a “fuzzy” disjoint clustering of the stimuli or objects
whose relations are being analyzed. The size of the loadings gives the strength
of cluster membership. And even when there are stimuli which load substan-
tially on several columns of A, this might be interpreted as an additive-cluster
representation, where objects can participate in several clusters simulta-
neously. Under the cluster interpretation, the R matrix gives the asymmetric
relationships among the several fuzzy clusters identified by the analysis.
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Pseudo- Hierarchical Clustering of the Segments

By examining the way in which DEDICOM partitions the segments into
clusters at each different dimensionality, from one to four, we can establish a
loose analog to a hierarchical clustering of the segments. Table 8 gives the one,
two, and three-dimensional A and R matrices for the car switching data. In
the one-dimensional solution, all the car makes load to roughly the same
degree (perhaps larger cars having slightly larger loadings), except that the
import segments (rows 3, 6, 9, 11, and 16) all seem to be smaller than their
neighboring loadings. (This suggests that there may be some special property
of switching involving imports which is not being captured in these analyses.)

The two-dimensional rescaled solution in Table 8 separates the car segments
into two groups, which can loosely be characterized by the “winners” and
“losers” in the competition for market share. The winners include all of the
small cars (the first six rows of A) with the interesting exception of Subcom-
pact Captive Import. The winners also include a large loading for Midsize
Specialty and Luxury Domestic. In essence, the winners include the three
groups which had advantageous switching patterns in the four-dimensional

TABLE 8

A and R Matrices from One- Through Three- Dimensional Solutions
for the Car Switching Data

1-Dimensional 2-Dimensional 3-Dimensional
Solution Solution Solution

:\ Dimension Dimensions Dimensions
Matrix 1 1 2 1 2 3
1 SUBD .071 126 —.003 157 —.015 .006
2 SUBC .054 .040 .073 .089 071 —.089
3 SUBI .046 .101 —.027 113 —.043 .034
4 SMAD .060 .106 —.002 116 —.022 .063
5 SMAC .063 125 —.020 .160 —.040 —.014
6 SMAI .046 .080 .001 .092 —-.014 .033
7 COML .076 .038 125 .103 139 —.134
8 COMM .071 .020 138 .053 151 —.052
9 COMI .044 017 .080 .056 .085 —.079
10 MIDD .077 —.008 192 .006 213 —.002
11 MIDI 038 .006 081 .020 .088 -.017
12 MIDS .082 169 —.033 .105 —.052 299
13 STDL .096 —.027 .260 —.031 292 .049
14 STDM .081 .056 113 —.033 139 325
15 LUXD .063 .107 .005 —.007 —.003 414
16 LUXI .032 .045 .014 .000 .011 .166

R
Matrix

1 1348106 395745 164137 316678 109668 51604

2 493066 300131 324085 219939 156065

3 42788 44667 123642
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solution of Table 7. The loser cluster picks out the Compact Non-Imports, the
Midsize Non-Imports, and the Low-Priced Standard. The Medium-Priced
Standard seems to straddle the two clusters, which is plausible since it has
some of the glitter of the more luxurious cars.

A glance at the R matrix quickly reveals why the second dimension was
labeled “losers.” There is a very large asymmetry in the estimated number of
switches, with the number of switches to the second cluster being roughly
one-third of the estimated switches from this cluster.

The three-dimensional solution splits the winners cluster into two meaning-
ful subsets: SMALL and FANCY LARGE-MIDSIZE. However, the Midsize
Specialty loads on both dimensions. Presumably, it has some of the appeal of
small cars, and yet also some of the appeal of luxury cars. The R matrix for
this solution reveals that both the SMALL and FANCY LARGE-MIDSIZE
clusters gain at the expense of PLAIN LARGE-MIDSIZE. There is relatively
little asymmetry in switching between these two winners.

It is possible to take the DEDICOM solutions, interpreted as representing
fuzzy additive clusters, and plot the evolution of progressively finer distinc-
tions which emerge at successive dimensionalities, in order to obtain a
pseudo-hierarchical clustering of the data. Cluster distinctions which occur at
lower dimensionalities are more important in the sense of accounting for a
higher proportion of the variance than the distinctions which occur as we
progress to higher and higher-dimensional solutions. For example, the basic
division into winners and losers improved the R? from 0.72 to 0.92. The next
division, which splits up the SMALL from the FANCY LARGTE, raises the fit
from 0.92 to 0.96, and the final isolation of the SPECIALTY cluster raises the
fit to only 0.98. Thus it might be justified to draw a hierarchical tree (or an
embedded clustering) such as that shown in Figure 3.

Analysis of the Car Switching Data Via Matrix Rescaling Only

As briefly mentioned earlier, there is an alternative approach to the problem
of unequal scale of the observations for different rows and columns of our
data. We can simply adjust the data themselves and then analyze the matrix in
the usual manner. Suppose we have determined the diagonal rescaling matrix
D which allows DXD to have equal sums of observations (i.e., equal row-plus-
columns sums, ignoring the diagonal) for all the segments. We let:

X = DXD (20)
and then decompose these data according to the DEDICOM model:
X = ARA’ +E. (21)

In other words, the second approach (data rescaling) simply uses the prelimi-
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FIGURe 3. Implied Pseudo-Hierarchical Additive Clustering of Automobile Segments Ob-
tained By Comparing DEDICOM Solutions At Successive Dimensionalities.

nary diagonal transformation to find X—as already described in Equation (6)
—and then directly analyzes this matrix in the usual manner.

The interesting thing about this approach (as described earlier) is that it
reweights and equalizes the relative importance of the different rows and
columns. For example, originally row 5 and column 5 of X contained very
small entries. Consequently, the estimates for this row and column were also
small, and (what is crucial for this argument) the errors were small, compared
to the errors made in estimating large rows and columns such as those for
segment 10. One consequence of this inequality of size of errors is that the
least-squares fitting procedure pays little or no attention to row 5. Differences
in the overall error of a given solution arising from row and column 5 are so
small as to have virtually no effect on the choice of parameter values. Instead,
large rows and columns such as those of segment 10 tend to dominate the
solution. Thus, the parameter values are adjusted so as to fit these large
numbers as closely as possible.

Sometimes, however, we are interested in the switching patterns of the small
segments, even though they may not be as accurately estimated, and even
though they may not have the same economic importance. In such a case, the
direct analysis of the rescaled data might be appropriate.

To demonstrate this approach, rescaled car switching data were generated
by multiplying each element of X (Table 4) by the corresponding row and
column rescaling coefficients (Table 6). While not discussed in detail here, the
resulting matrix was analyzed directly by DEDICOM in one through eight
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dimensions. Unfortunately, two of the smallest segments—Small Specialty/
Captive Import and Luxury Import—produced two extra dimensions on
which each was the only segment loading substantially.

These two segments were dropped from the raw data matrix and the
rescaled data were again analyzed—this time in one to six dimensions. At four
dimensions the solution also revealed the presence of the PLAIN LARGE-
MIDSIZE, FANCY LARGE, and SMALL dimensions, already noted in
Tables 5 and 7, but the SPECIALTY dimension did not emerge. Instead, an
IMPORT dimension appeared. Attempts to find a five-dimensional solution
that contained all four original aspects and the IMPORT aspect were not
successful.

Finally, symmetric solutions were also obtained, using both methods of scale
adjustment (i.e. solving for A and R versus direct analysis of the rescaled data
f(). As was the case in the word associations data, the symmetric analyses were
considerably more difficult to interpret and less informative than their asym-
metric counterparts. As an illustration of the difficulty of interpretation of the
symmetric solutions, Table 9 shows the one, two, and three-dimensional

TABLE 9

A and R Matrices from One- Through Three- Dimensional Solutions
for a Symmetric Analysis of the Car Switching Data

1-Dimensional 2-Dimensional 3-Dimensional
Solution Solution Solution
:‘ Dimension Dimensions Dimensions
Matrix 1 1 2 1 2 3
1 SUBD .069 .104 -.017 142 —.025 .047
2 SUBC .053 .091 —.047 .082 —.048 .092
3 SUBI .045 .065 —.006 .060 —.007 . .065
4 SMAD .060 075 .019 —.009 011 .206
5 SMAC .069 .110 —.045 .043 —.039 .184
6 SMAI .047 .066 —.005 —.045 015 195
7 COML 075 124 —.048 223 —.080 .003
8 COMM .069 .087 .021 159 .007 —.007
9 COMI .044 .075 —.038 .061 —.035 .080
10 MIDD .076 .068 .091 118 .086 .004
11 MIDI .040 .045 .023 .032 .029 .056
12 MIDS .080 051 153 .048 .164 .058
13 STDL .095 .070 155 174 .146 —.055
14 STDM .080 .003 304 .069 .296 —.061
15 LUXD .065 —.028 313 —.066 332 .032
16 LUXI .032 —.006 129 —.089 149 .100
R
Matrix
1 1354037 741703 185997 492893 123761 123140
2 185997 274164 123761 232912 51651

3 123140 51651 88868
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TABLE 10

A and R Matrices from the Four- Dimensional Solution for a
Symmetric Analysis of the Car Switching Data

Dimension
A

MATRIX 1 2 3 4
1 SUBD 162 —.002 —.005 031
2 SUBC .093 —.022 —.069 107
3 SUBI .069 .006 —.053 .091
4 SMAD .048 —.061 195 .082
5 SMAC .099 —.104 134 .093
6 SMAI —.041 -.077 132 195
7 COML 243 —.020 —.062 —-.013
8 COMM 161 .065 —.046 .002
9 COMI .044 .031 -.219 .186
10 MIDD 110 .068 .141 -.013
11 MIDI .023 .009 .027 .082
12 MIDS —.007 —-.003 .624 —.001
13 STDL 157 156 144 —.061
14 STDM .025 .506 -.035 —.018
15 LUXD —.085 332 .093 .077
16 LUXI —.098 116 —.001 .161

R
Matrix

1 389421 68118 113947 62874

2 68118 136738 72164 26696

3 113947 72164 138002 31608

4 62874 26696 31608 50098

results and Table 10 the four-dimensional solution for the A and R approach.
These can be compared with the earlier-described results of the asymmetric
case, appearing in Table 7.

In contrast to Table 7’s relatively clear interpretation, the symmetric solu-
tion appears to be less informative. In Table 9 the two-dimensional solution
appears to distinguish the lower priced makes from expensive makes; the
three-dimensional solution splits the lower priced cars into Small Specialty
cars versus a rather heterogeneous mixture of Compacts, a Low-Priced Stan-
dard, and a Subcompact Domestic. The four-dimensional solution (Table 10)
also appears difficult to understand. While dimensions two and three appear
to be FANCY LARGE and SPECIALTY, respectively, dimension four now
looks like an IMPORT dimension while dimension one contains a heteroge-
neous mixture of Subcompacts, Compacts, and even a Low-Priced Standard.

All in all, we find the A and R solutions appearing in Tables 7 and 8 (and
portrayed as a cluster structure in Figure 3) to be the most direct and
appealing. Still, the availability of alternative approaches provides the re-
searcher with complementary ways to analyze the same data set. The availabil-
ity of complementary approaches provides the potential for obtaining richer
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information about a data structure; whether that potential is realized or not,
of course, depends on the specific data set.?

Discussion

It seems fair to conclude from the two preceding field-level applications
that diverse sets of data are amenable to DEDICOM analysis, and that
DEDICOM can sometimes provide significantly better fit values and more
interpretable solutions than are obtained by symmetric models (that are
analogous to factor analysis and multidimensional scaling).

It would seem that there are at least five distinct advantages to performing a
DEDICOM analysis of data sets with real and potentially important asym-
metries: (1) The data are better represented by the asymmetric DEDICOM
model, in the sense that the fit is better, and thus more of the structure of the
data is incorporated into the definition of the dimensions, resulting in dimen-
sions that are usually more meaningful; (2) the R matrix which is obtained as
part of the solution provides a source of information on patterns of asymmet-
ric (and symmetric) flows among clusters, or aspects, of the data, and this

2We have been applying DEDICOM to transition matrices X and symmetrically rescaled
transition matrices X. Suppose, instead, we preferred to think in terms of matrices of conditional
probabilities, where each row summed to 1.0 and each entry gave the probability of switching to
car make j given that one had previously owned car make i. How should we proceed with the
analysis? Unfortunately, it seems that if the original data matrix X were appropriate for the single
domain DEDICOM model, then the matrix of conditional probabilities obtained from X would
not be appropriate for that model. The problem arises because in order to obtain the conditional
probability matrix, we apply a nonsymmetrical rescaling to the data. Each row is multiplied by a
constant so that the row sum is equal to 1.0. If we let W represent an n by n diagonal matrix of
rescaling weights, with the diagonal entries w; = (3 jx,j)", then our original data matrix with
DEDICOM structure

X=ARA'+E
is transformed into the matrix of conditional probabilities P, as follows
P, = WX + WARA’ + WE.

The structure of P, is not suitable for the single domain DEDICOM model, since the row
dimensions have the form WA and the column dimensions have the form A.

While dual domain analysis could be carried out on this data, the presence of error in the data
would prevent the obtained solution from exactly fulfilling the constraint that WAq = Aigps
even if the underlying structure of X did exactly fulfill the single domain model. It seems more
straightforward, therefore, to simply analyse X and then (if desired) rescale the rows of A by W to
obtain loadings appropriate for a “constrained” dual-domain solution.

It is interesting to note in passing, however, that if the data are globally rescaled, so that each
cell represents an unconditional transition probability (i.e. if ;c,j = x,j/ >i2,%;) then the single-
domain analysis is appropriate and the parameters have a particularly nice interpretation in terms
of conditional and unconditional probability components which multiply together to give the
unconditional transition probabilities (see Harshman 1982a for details).
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information can often have useful marketing implications; (3) the A and R
matrix scaling conventions adopted for DEDICOM can provide particularly
direct and concrete relationships between the data and the inferences that can
be drawn from the solution (e.g., one can obtain “actual” switching frequen-
cies between latent clusters, or “actual” associative strengths between latent
aspects of phrases); (4) DEDICOM’s method for rescaling the rows of A,
and/or removing the scale-factor inequalities of overall scale from the rows
and columns of X (by means of the same multiplier applied to rows as to
columns) provides a novel solution to problems of scale inequalities that
sometimes arise in marketing and other social science data; and (5) signifi-
cance tests for the asymmetries provide a method for evaluating the “reality”
of the asymmetrical structure in a set of data.

Limitations of the DEDICOM Approach

Now that the DEDICOM model has been described and illustrated in terms
of two actual data sets, it seems useful to discuss some current limitations of
the approach and planned methodological developments for the future. Fol-
lowing this, we list some types of marketing and behavioral research data that
might be fruitfully analyzed by the technique.

The solutions presented in this article were obtained by a closed-form
algorithm which provides only an approximation to a least-squares solution. A
true least-squares solution can be obtained by an iterative method, but the
potentially most efficient iterative approach (involving alternating least
squares) has not yet been programmed. Thus, current solutions are only
approximations to the parameter values that will be obtained when the
alternating least squares method becomes available. Tests comparing the
solutions obtained by the approximate least squares methods with current
(inefficient but true) least squares methods indicate that interpretation of the
solution would not be changed by the modest differences obtained.

As currently programmed, DEDICOM expects ratio-scale data. However,
this does not usually seem to seriously impair the ability of the model to
obtain good fits and meaningful solutions, as demonstrated by the examples
above. Data such as brand switching or association frequency matrices possess
a natural origin or zero, and so the problem of an additive constant is not a
problem. However, many data sets are really only interval-scaled, at best.
These kinds of data should be adjusted by estimation of an “additive con-
stant” as in MDS, or by double centering; alternatively, the issue could be
handled by a parameter within the model for estimating the additive constant
required to convert the data to ratio-scale. Such an approach is under
investigation. '

Recent and Future Research for DEDICOM

Other extensions of the DEDICOM model have already been envisioned
and, for some of these, the program algorithms have been specified mathemat-
ically. One example is the estimation of row and/or column bias terms. In
some data, “uninteresting” asymmetries are introduced as a consequence of
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such biases, and it would be useful to remove these effects as part of fitting the
model to the data. Approaches to this are discussed in Harshman (1982a),
along with other extensions of the model.

It has been shown (Harshman, 1981; Harshman and Lundy, 1982) that
DEDICOM provides a new way to analyze dominance matrices of the type
often associated with paired comparisons preference data. Typically, domi-
nance matrices are analyzed by some model such as the Thurstonian Case V
(Green and Tull, 1978), or the Bradley, Terry, Luce (Restle and Greeno, 1970)
procedures.

DEDICOM contains a procedure for analyzing such skew-symmetric matri-
ces. Data that are strictly scalable by a method such as Case V appear in the
DEDICOM analyses as a straight line in two dimensions; more complex
scales show up as curved lines or other configurations in the plane. Multiple
scales show up as lines in sets of planes (one plane for each scale) while
nonscalable points plot near the origin.

A version of DEDICOM has also been proposed for three-way matrices
(e.g., car switching by successive model years). In this extension the model of
Equation (1) becomes:

X, = ADRDA’ +E, (22)

where each D, matrix is a diagonal matrix giving the weights for the underly-
ing aspects that are appropriate for the ith model year.?

Other Application Areas

In addition to the kinds of data illustrated here, DEDICOM is applicable to
other classes of marketing and behavioral research data. Illustrative of these
classes of data are:

® Attributions data ® Like/dislike data

® Compatibility data ® Confusions data

® Communications flows @ Subjective judgments on causality
® Second choice data ® Temporal (precedence) data.

No attempt will be made to illustrate these many possibilities; moreover, as
additional experience with DEDICOM is gained, other kinds of data will
surely be suggested.

One way to distinguish these kinds of analyses from the more traditional
analysis of symmetric data is to say that the latter emphasizes relations that
pertain to the shared attribute levels that two objects exhibit. For example, two

3A related approach to the problem of representing three-way asymmetric data has been
described by Carroll (1977).
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brands are “similar” to the extent that they exhibit common attribute levels.
In contrast, in the DEDICOM analysis of asymmetric data, emphasis may be
placed on the complementarity of the object pairs; for example, the degree of
liking for some second object, given that one has already received his/her first
choice. In this case, the two objects may exhibit relatively little in the way of
common attribute levels; indeed, the second object may be highly liked
precisely because it is different from (but complementary to) the first-choice
object. It seems to us that relations of this type are both prevalent in
marketing and important to model.*

Technical Appendix

Only the essentials of the single domain DEDICOM model were outlined in
the body of the paper. Here, we describe a related model in the DEDICOM
family as well as some features of the algorithm used to find numerical
solutions.

The Dual Domain Model

The primary model of Equation (1) can be described as a single domain
model in the sense that the solution technique requires the row space to be the
same as the column space (i.e., where one is a linear transformation of the
other). However, suppose we reconsider the situation involving the car switch-
ing data. It may be that certain characteristics of cars (e.g., repair history) are
more salient when one is disposing of a car than when one is considering the
switched-to car; in the latter case, body style and appearance may be more
salient.

In any case, DEDICOM has an option that permits the user to fit a model
in which the column space does not have to equal the row space. The dual
domain model (Harshman, 1982a) can be written as:

X =ARA +E (23)

where A and A are n X ¢; Ris ¢ X ¢; and E, as usual, is n X n.

In contrast to Equation (1), the present model provides two sets of latent
entmes A gives the weights of the observed objects in their row positions,
while A gives the counterpart weights for the column positions. The R matrix
gives the directed relationships from the At A aspects.

Assuming that A and A are not linear transformations of each other, there
generally is no g-dimensional solution of the form given by Equation (1) for
data represented by Equation (23). In this sense, the assumptions underlying

*Finally, an important area for future research involves the possibility of extending the
DEDICOM methodology to “comfirmatory” analyses, in the spirit of recent developments in
structural modeling (Bagozzi, 1980; Joreskog, 1978).
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the model of Equation (23) are weaker than those of Equation (1). Hence, if
data are fitted about as well with Equation (1) as with Equation (23), we have
greater confidence in the existence of a common process underlying the row
and column interaction patterns. (Randomization tests for comparing the two
models are under development; Harshman, 1982a.)

Model Solutions

The more general (“weak”) model of Equation (23) is solved as follows:
1. Find the singular value decomposition of X

X = PDQ’ (24)

where D is diagonal, and P and Q are orthonormal sections.

2. For a g-dimensional solution, take the first g singular vectors and rotate
them to the desired pattern (e.g., a simple structure approximation) via T and
T

A=PT; A=q,[. (25)
3. Estimate R by least squares, given A and A:
R=A*XA*Y (26)
where

t=AA)TA; AT =(AA) A @27)

Thatis, A* and A* are pseudoinverses of 4 and A4, respectively. This provides
a true least-squares solution.

One method of obtaining an approximate least-squares solution for the
“strong” model of Equation (1) is as follows:

1. Find the singular value decomposition of X as in Equation (24).

2. Define the symmetrizing rotation L

L=QP. (28)
3. Find V, the common-space transformation of X:

V =XL + LX = PDP’ + QDQ'. (29)
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4. Find the singular value decomposition of V:
V =PDQ’ (30)

and take the first g singular vectors.
5. Rotate the first ¢ singular vectors to the desired pattern (e.g., a simple
structure approximation) to obtain A:

A=PT. (1)

6. Estimate R by regression methods, similar to those already shown in
Equations (26) and (27).

Iterative solutions also exist for DEDICOM, and research is underway in
the development of efficient exact least squares solutions employing alternat-
ing least squares.

User Options

The DEDICOM computer program contains a number of features for
facilitating different kinds of analyses. In addition to fitting either the strong
or weak forms of the model, the user can specify a number of other options:

1. The original main diagonal entries in X can be considered as fixed or as
starting values for successive estimation via an iterative procedure.

2. Various preliminary row and column normalizations of X can be carried
out prior to model fitting (as illustrated in the main text).

3. Various rotation matrices T, including orthogonal, oblique, or fixed
target, can be applied to the A matrix.

4. Alternative scalings of A and R can be selected.

5. The input matrix X can be decomposed into its symmetric and skew
symmetric parts and each matrix analyzed separately.

The various options described above can be called upon in a flexible
manner so that several different analyses can be conducted during a single run
of the program.

A number of programming refinements are currently being added to
DEDICOM. An exportable version of DEDICOM should be available for
leasing by commercial or academic researchers in late 1982 or early 1983.
Details can be obtained from Scientific Software Associates, 48 Wilson
Avenue, London, Ontario, Canada, N6H 1X3.
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