MULTIWAY DATA ANALYSIS
R. Coppi and S. Bolasco (Editors)
© Elsevier Science Publishers B.V. (North-Holland), 1989 123

A TWO-STAGE PROCEDURE INCORPORATING GOOD
FEATURES OF BOTH TRILINEAR AND QUADRILINEAR MODELS

Margaret E. Lundy, Richard A. Harshman
Psychology Dept., University of Western Ontario, London, Canada N6A 5C2
Joseph B. Kruskal
Statistics Dept., AT&T Bell Laboratories, Murray Hill, New Jersey, USA

Abstract

Applications of trilinear (PARAFAC-CANDECOMP) factor/component analysis to data
requiring the more complex quadrilinear (Tucker T3 or T2) model sometimes produces
uninterpretable “degenerate” solutions, in which two or more factors are highly negatively
correlated (see Harshman, Lundy, & Kruskal, to appear; Kruskal, Harshman, & Lundy, .
this volume). The more general model does not have this problem, but it is subject an axis
indeterminacy that leaves some interesting questions unanswered. Described here is a two-
stage procedure that combines the strengths of the trilinear (PARAFAC) and quadrilinear
(Tucker T3) models to better deal with such problems. An application to real data illustrates
how it provides unique meaningful axes along with a core matrix that can give substantive
insights into the data complexities that caused the degeneracies. More general models are
also discussed.

1. INTRODUCTION AND BACKGROUND

Two well-known methods of three-way component analysis are PARAFAC- CANDECOMP
(hereafter referred to as PARAFAC), which uses a trilinear model (Carroll and Chang, 1970,
Harshman, 1970; Harshman and Lundy, 1984b) and Tucker’s model (Tucker, 1964, 1966)—we refer
to it as the T3 model—which is a quadrilinear one. As discussed in Harshman, Lundy and Kruskal
(to appear), each model has strengths that make it particularly appropriate for certain situations and
also weaknesses that sometimes hinder its application. The occurrence of “degenerate” solutions is a
problem that has arisen with some PARAFAC applications; Harshman et al. describe the characteristics
of such solutions in some detail. Kruskal, Harshman and Lundy (this volume) mathematically show
how the presence of T3 structure in the data can give rise to these degenerate solutions.

It has been possible to “block” the degeneracy by imposing orthogonality constraints on the
PARAFAC factors in one mode. An interpretable solution can thus be obtained, but it sheds no light
on exactly what caused the degeneracy (Harshman et al.,, to appear ). The procedure that is proposed
here—we call it PFCORE—goes a step further in coping with degeneracies. It combines advantages
of both the T3 and PARAFAC models, giving more insight into the complex structure of the data and
how it violates the PARAFAC model.

In this paper, we first present PARAFAC solutions for some real data which illustrate the need
for PFCORE; we then describe the PFCORE procedure and its application to the real data example.
Finally, we note how the PFCORE procedure can be extended to more general models.

2. PARAFAC APPLICATION TO “TV” DATA

The data set to which PARAFAC was applied consists of ratings of 15 American television shows
on 16 scales, made by 40 subjects in 1981 (see Figure 1). The ratings were made on 13-point bipolar
scales; the subjects were introductory psychology students at the University of Western Ontario who
were familiar with the shows.
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Rating Scales TV Shows
1. Thrilling . . . . Boring 1. Mash
The Three-way Array X 2. Intelligent . . . Idiotic 2. Charlie’s Angels
3. Erotic ..... Not Erotic 3. All in the Family
4. Sensitive . . . . Insensitive 4. 60 Minutes
2. glteresting .. glninteresting 5. The Tonight Show
. Fast ...... ow )
Persons /~— 71 6. Let’s Make a Deal
. Intellectually . Intellectuall
Stimulating . . Dull y ;- ghe vzam;?.sh g
. 8. Violent . ... Peaceful - Saturday Night Live
/ Rating Scalés 9. Caring . . ... Callous 9. News (any gik{?grrll)el;
B 10. Satirical . . . . Not Satirical ,
Vi - 11. Inf 1 Uninf ti 10. Kojak
Shows = . Informative . . Uninformative 11 Mork and Mind
12. Touching . . . "Leaves Me Cold" . y
13. Deep . . . ... Shallow g ?cqltl)esuCousteau
. Footba
14. Tasteful . ... Crude 14. Little House on
Figure 1. (above and right) Charac- 15. Real ...... Fantasy the Prairie
teristics of the TV Dataset. 16. Funny .. ... Not Funny 15. Wild Kingdom

Two- and three-dimensional analyses are discussed here, with the two-factor unconstrained solution,
and factor 3 of the constrained 3-factor solution, presented in Figure 2. The solutions are scaled so
that in Modes A and B, the mean squared factor loading on each factor is 1.0, and the Mode C
loadings are adjusted in a compensatory way to reflect the scale of the data.

2.1 The 2-D PARAFAC Solution

The two-dimensional solution was well-behaved and interpretable. It accounted for 389% of the
data variance. The correlations between columns of the factor loading matrices was low in all three
modes: 0.03 in Mode A, -0.01 in Mode B and -0.35 in Mode C.

To aid in the interpretation of the solution, we construct one- way plots for each factor. Figures
2a and 2b show factor 1 and 2 of the 2D unconstrained solution. In each plot, Mode A and B loadings
(i.e. for Scales and Shows) are plotted on separate vertical axes. Labels are positioned according to
the size of their loading on the factor; those with loadings close to zero have been omitted. Note that
the scales plot is unipolar; scales with a negative weight on the factor are plotted using the absolute
value of the loading, and the label from the “negative” (opposite) end of the scale is written instead.
A vertical line for the Subjects Mode is not included in any of the plots, because we had no additional
information about the subjects that would help us interpret the factor. (Normally, the loadings in all
three modes are used for factor interpretation.)

Figures 2a and 2b thus provide a visual summary of the relative strengths of the scales and shows
that load substantially on the two factors. In Figure 2a, we see that “satirical” and “funny” (and
“erotic”) load highly in the scales mode; humorous shows such as Mork and Mindy and Saturday Night
Live have relatively large positive weights in the shows mode while serious, informative shows like
Jacques Cousteau, News and 60 Minutes have relatively large negative weights. Hence, we interpret
factor 1 as a “Humor” dimension. Figure 2b indicates that the scales that load highly on factor 2 are
“caring” and “sensitive” (and “touching”). The two family-life shows in the sample, The Waltons and
Little House on the Prairie, load high in the positive direction while Football and News load negatively.
Clearly, factor 2 is a “Sensitivity” dimension.

2.2 The 3-D PARAFAC Solution

The three-factor unconstrained PARAFAC solution was a typical “degenerate” solution (Harshman
and Lundy, 1984a; Harshman et al., to appear). It had very high correlations between factors 1 and
2 in all three modes (0.97 in Mode A, -0.93 in Mode B and 0.82 in Mode C), the triple product of
which was negative. This solution, which replicated from different starting positions, accounted for
44.4% of the data variance. Admittedly, the increase in variance-accounted-for, compared to the
two-dimensional solution, is only 5 percent, but other checks lead us to believe that the third factor,
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Figure 2: Two-factor unconstrained solution, TV Data

although small, is “real.”

As is typical of degenerate solutions, the highly correlated dimensions were uninterpretable. They
both appeared to be a combination of the funny and satirical items seen in the humor factor of the
two-dimensional solution, mixed with violent items. As is also typical of many degenerate solutions,
the third factor was easily interpretable. In this case it was the same “Sensitivity” factor seen as factor
2 of the two-factor solution.

2.3 The 3-D Constrained PARAFAC Solution

The three-factor analysis was repeated, but with the factors in Mode A constrained to be orthogonal.
The R? fit value dropped only slightly, from 0.444 to
0.438. Again, factor 1 was interpreted as “Humor” and Factor 3: Violence

factor 2 “Sensitivity” (minor changes in weights of some
scales and shows did not change the interpretation). 20 Scales Mode 5, Shows Mode

The new information was contained in factor 3. As is Violent ggotbgll,

. . , arolie’s Angels
apparent from Figure 3, factor 3 is clearly a “Violence” Kojak
dimension, with “violent” loading extremely high in the L59Rot Funny 0T
scales mode and Football, Charlie’s Angels and Kojak Fast Let's Make a Deal
loading in a high positive direction in the shows mode. Real News
In contrast, nonviolent family shows Mork and Mindy, 1oL .

The Waltons, Little House on the Prairie and All in the Uninteresting i
Family have large negative weights.

This constrained solution is well-behaved, replicable os L 1.0 [Allin the Family
from different starting positions and interpretable. It Little House on the
does not, however, explain what caused the degeneracy Mork & Mindy
in the unconstrained solution. And, some information 00 | 20l
has presumably been lost, as indicated by the (small)
decrease in fit Figure 3: Third dimension of the 3D con-

strained Parafac analysis, TV Data.

3. PFCORE PROCEDURE

As discussed elsewhere, the degenerate PARAFAC solution is a result of some complexity in the
data structure that violates the PARAFAC model. Empirical studies (Harshman and Lundy, 1984a;
Harshman et al,, to appear) and mathematical work (Kruskal et al,, this volume) show that in fact
T3 structure in the data will cause degenerate PARAFAC solutions; this suggests the need to reanalyze
with a more general model like Tucker’s. However, the rotational indeterminacy of T3 solutions and
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possible interpretational difficulties mean that the T3 model is not a perfect alternative. The PFCORE
procedure that we propose combines advantages of both models: the intrinsic axis property of
PARAFAC (hence no rotation is necessary) and the T3 core array (which provides information about
factor interactions, not allowed for by PARAFAC).

Suppose we have an m by n by p three-way data array X, and x;ik is an element of X. The PFCORE
procedure involves two steps:

1. Fit the constrained PARAFAC model to the data (the factors in one mode are constrained to
be orthogonal) using

q
X = Z ajr bjr Cpr ey

where a;» represents the loading or weight of factor r on the i level of Mode A, bj the loading
of factor r on the j th 1evel of Mode B, and ¢ the factor r loading on the K level of Mode C. a;
is an element in A, the m by g factor loading matrix for Mode A. Similarly, bjr is an element of B
and ¢ is an element of C, the n by g and p by g factor loading matrices for Modes B and C
respectively. Here and elsewhere in this paper, the symbol “~” is used to represent equality except
for error terms, which are not specified.

2. Using the constrained solution obtained in step 1, estimate the corresponding T3 core array via

92 9 94c
Xijke = z E E azr js Chkat 8rst - ()
r=1 s=1 =1
The coefficients aj, bjs and ¢k are the PARAFAC estimates of the Mode A, B and C factor loadings
respectively; hence all three modes have the same number of factors and so g, = gp = g = ¢;
Xjjk is as defined for (1). g is the entry from the g by g by g “core array” G, which gives the size
of the interaction between factor r in Mode A, factor s in Mode B and factor ¢ in Mode C.

Rewriting (2) as

Xijke = rgair (élbjs (21% &rst ) 3)

and premultiplying by the appropriate elements from the generalized inverses A*, B* and C* of
the factor loading matrices A, B and C respectively, we obtain the estimate of the T3 core element

;CI;(;b]:(;a;xﬁk)) = st - ©)

(Note that the order shown for the summations in (3) and (4) is arbitrary.)

In effect, the PFCORE program computes the generalized inverses of the constrained
PARAFAC factor loading matrices A, B and C, and then multiplies the data array X by these inverse
matrices to estimate the g by g by ¢ T3 core array G. We use the loading matrices from the constrained
solution rather than the degenerate one, because the constrained factors are interpretable and hence
the core array will describe relationships among meaningful components.

It is important to note that the variance extracted by the constrained PARAFAC analysis is not in
general the same as that extracted, for the same dimensionality, by the T3 model. Sometimes the T3
extracts a substantial variance component due to interaction of different factors before extracting a
smaller third or fourth factor. Hence it is not generally possible to rotate the g by g by g dimensional
T3 analysis to obtain the same dimensions and core as a g dimensional PFCORE analysis. With the
TV data, for example, only some of the PFCORE factors were recoverable in the rotated T3 solution.
The rotated T3 solution may more clearly bring out the cause of the degeneracy, while less clearly
displaying all the distinct dimensions and their core-matrix interactions. The relationships between
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these two kinds of solutions should be an interesting area for further research.

4. PFCORE APPLICATION

The PFCORE procedure was applied to the TV data set, using the three-factor constrained
PARAFAC solution described above to estimate the T3 core array that is shown in Table 1. It is
presented as three 3 by 3 matrices of scale factors by show factors, one matrix for each subject factor
or “idealized person”, as we prefer to call it. The (1,1), (2,2) and (3,3) entry for the first, second and
third idealized person, respectively, are the “superdiagonal” elements of the core array (i.e., the (1,1,1),
(2,2,2) and (3,3,3) elements).

If the structure in the data could be entirely fit by the PARAFAC model, all elements other than
the superdiagonals would be zero. However, there are some substantial off-superdiagonal values for
idealized persons 1 and 3, which indicate the presence of T3 structure. Off-superdiagonal values with
a magnitude greater than 0.30 (an arbitrary value) are interpreted. Kroonenberg (1983, 1984) discusses
various ways to interpret the elements of the core array, but here we concentrate on their meaning

as interactions among the factors in
the three modes of the data.

The superdiagonal values indicate

Table 1: Core Matrix for PARAFAC Factors

Br1 a large positive interaction between
Cr1 Funny corresponding factors in all three
Shows

modes, as expected for PARAFAC
factors (factor 1 in the scales mode in-
First teracts with factor 1 in the shows mode
Idealized Individual for the first idealized person, etc.).
(Core Slice One) Some of the off-superdiagonal values

Am  fhmer 11058

Sensitivity
Arz Scales -.084

Ars Violence | 095 | 093 | -.057 indicate substantial interactions
amongst other combinations of fac-
Brt Br2 Brs tors, as allowed by the T3 model. In
Funny | Sensitive | Violent particular, there is a positive interac-
Cr2 ’
Shows | Shows | Shows tion of 0.301 between the “Humor”
Ar  Humor 014 | -013 | .089 scale factor and the “Violence” show
Second factor for idealized person 1. In other
itivi n . .
AR Sas;”a‘;;’y -071 951 J13 | 1dealized Individual words, this person tends to rate violent
Ars Vil (Core Slice Two) shows as more humorous than
P e | 016 | -049 | -.025 average (or nonviolent shows as less
humorous). Another way of inter-
Br1 Br Brs preting this is to say that his/her humor
Crs Funmy | Sensitive | Violent ratings for violent shows are about 30
Shows Shows Shows .
— — percent as great as his/her humor
A1 f;‘c‘;';;’ =125 :i -.667] ratings for funny shows. (Further-
. — : more, s/he tends to rate sensitive
ensitivity Third
AF2  Scales 244 | -099 | 194 | iealized Individual | SROWS @S somew.hat. less humorqus
Violerce (Core Slice Three) than average, as indicated by the in-
AB Cscaes | 135 | 087 | 1.061 teraction value of -0.257 in the (1,2)
cell.)

In contrast, idealized person 3
shows an opposite pattern of interac-
tions between the “Humor” scale fac-
tor and the “Sensitivity” and
“Violence” show factors. The positive
interaction of 0.485 indicates that s/he sees more humor in sensitive shows than the average person
does (or less humor in insensitive shows); the interaction of -0.667 indicates that s/he rates violent

Idealized person 1 rates violent shows as more humorous,
whereas idealized person 3 rates sensitive shows as more
humorous, but violent shows as less humorous.
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shows as substantially less humorous than average (or nonviolent shows as more humorous).

Thus we see that the complexities of this data set are related to differences in people’s sense of
humor. (The ratings of the actual subjects are weighted combinations of the idealized people.) They
present problems for the simple PARAFAC model, and the large off-superdiagonal interactions for
idealized persons 1 and 3 show why. They are geometrically equivalent to substantial differences in
obliqueness between factors, the “Humor” and “Violence” factors especially. They cannot be repre-
sented by PARAFAC, which requires that the obliqueness between factors be invariant across in-
dividuals. PARAFAC’s attempt to fit this structure was the degenerate three-dimensional solution,
which revealed two highly correlated factors (negatively correlated in one mode) on which both
humorous and violent scales and shows loaded highest.

5. MORE GENERAL MODELS

5.1 The T2, T1[A] and T1[B] models
Table 2 presents a list of models for fitting three-way data, starting with the most restrictive,
PARAFAC, and then the more general T3 model, that were previously discussed. Next is Tucker’s
“extended core” model (Kroonenberg, 1983), which
is called T2, followed by two even more general Table 2: T3 & More General Models
models that we refer to as T1(A) and T1(B). xiik,
air and bjs for the T2 and T1 models are as defined 9da 95 9
for T3 in (2), and the g’s are elements in “core” Xije = D X airbjscugs T3

arrays of various sizes. r=1s=1 =1
The T2 core array has the same number of 9, 9
levels in the third mode as the data (i.e, it is g, by Xjk = E 2 air bjs sk V)
gp by p). In contrast to T3, each individual (assum- r=1 s=1
ing levels of Mode C are people) is allowed his/her p

own set of interactions between the factors in _
Modes A and B, rather than being represented by Kije = rZI @ir Erji T1(A)
a weighted combination of idealized people’s inter- -
actions. The T1 models reduce the data even less. qp
For T1(A), the “core” array G is g4 by n by p; for Xjge = 2 bjs 8isk T1(B)
T1(B), G is m by gp by p. In other words, T1(A) s=1

estimates factors for Mode A only, and G gives the
“interactions” between the Mode A factors and the
levels of Mode B for each level of Mode C. With
the TV data, for example, T1(A) would fit the common scales space and G would give the interactions
between the scale factors and the individual TV shows for each subject (i.e., G would give each subject’s
“ratings” on the scale factors for each show). Similarly, T1(B) would fit the common shows space and

G would give each subject’s “ratings” for the show factors on each bipolar scale.

Besides estimating the T3 core array, the PFOORE program estimates the core arrays and com-
putes RZ fit values for the T2 and T1 models, using the PARAFAC estimates for the factor loading

matrices A, B and C. Estimation of these “extended” core arrays is similar to the T3 core estimation
except fewer generalized inverses are involved. For example, T2 can be written as

9, dp
X = ., ay (Eijs 8rsk )
r=1 s

We premultiply by the appropriate elements from the generalized inverses A* and B* of the
PARAFAC factor loading matrices A and B, respectively to obtain the T2 core element
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E. bj-al‘- ( 2 a;'- Xijk ) = 8rsk
j i

(As in (3) and (4), the order of the summations is arbitrary.)
The T1(A) core is estimated by

+
2 Air Xjke = 8k >
l
and the T1(B) core by
+
E bjs Xijk = 8isk
] ‘

5.2. PFCORE Estimates of Fit

The fit values currently generated by PFCORE are the squared correlations between the real data
and the data predicted by each model. When PFCORE is used to estimate fits for the family of
models in Table 2, the pattern of values may sometimes suggest the presence of even more general
structure in the data than T3. However, one needs a yardstick against which to compare the increases
in fit, to see if they are larger than would be expected simply from the increase in the models’ degrees
of freedom. This can be obtained by using the PARAFAC data synthesis capability to generate synthetic
data arrays with the same size and same systematic structure as in the constrained PARAFAC analysis
of the real data, plus the appropriate amount of random noise added to produce fit values similar to
those obtained with the real data. Such synthetic data arrays represent the null hypothesis, where
there is no substantial structure more general than the trilinear structure of PARAFAC- CAN-
DECOMP. In any real application, several such synthetic arrays are analyzed, to obtain an indication
of stability.

The results for the TV data, where the three-factor constrained PARAFAC solution is used, are
not particularly dramatic; they suggest modest T3 and perhaps T2 components, as well as some T1,
but none of the comparisons are clear cut. Therefore we have used another dataset to demonstrate
what can be found.

Table 3 gives some fit values for a dataset based on 40+ subjects who used bipolar rating scales
to evaluate a set of metaphors. The two-dimensional unconstrained PARAFAC solution was
degenerate; the constrained two-factor solution is used here. The left column shows fit values for the
“real” metaphor data, and the right two columns show fit values for two synthetic data sets, these have
2D PARAFAC structure like the real metaphors, plus random noise.

As in Table 2, the models are ordered from
most restrictive to most general (T1(A) and
T1(B) are equally general). It is interesting that

Data set being fit
Metaphor Data | Synthetic Data | Synthetic Data

the table suggests some T3 and T2 structure, Model (2D Sol) Set 1 Set 2
but mainly indicates a large amount of T1(A) Parafac-Cc 247 255 253
structure in the data. This is consistent with 3 50 261 257
other knowledge about these data: the raters = : :
could easily understand and agree on the 306 268 262
dimensions underlying the rating scales, but e 640 356 357
they had very idiosyncratic responses to the T1(B) 370 324 317
metaphors, many of which were “bad” or Table 3: PFCORE fit values

bizarre.

5.3 Further Development

Further research will include Monte Carlo studies, which are needed to answer two types of ques-
tions. The first is how big must the off- superdiagonal core elements be to be “real”, since small values
may be due to error? If we knew this, we would not use some arbitrary value, such as 0.30 with the
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TV data, when deciding which core elements to interpret. The second question is how much must
the fit increase to confirm the need for a more general model, since small increases may be due only
to more degrees of freedom? A separate Monte Carlo study for each data set can be conducted as
described above to answer this question, but a general rule would perhaps eliminate this time-con-
suming procedure in most cases.

6. SUMMARY AND CONCLUSION

To summarize, PFCORE incorporates good feature of two factor analysis models for three-way
data—the intrinsic axis property of PARAFAC and the core array of the T3 model—in a two-step
procedure. There is thus no rotation problem and the core array provides additional information
about the data structure. PFCORE also provides fit values for successively more general models:
Tucker’s T2 model, and models that we call T1(A) and T1(B). The motivation for using PFCORE
is usually a “degenerate” unconstrained PARAFAC solution, although you might sometimes input a
nondegenerate unconstrained solution to see what the associated T3 core looks like (e.g., you might
want to look at the T3 core corresponding to the two-factor solution for the TV data).

The application of PFCORE to the TV data set provides a good example of the extra understanding
of the data that can be gained by using PFCORE. The three-factor constrained PARAFAC solution
is comprehensible enough, but it is the T3 core array that sheds light on the interesting and important
complexities in the data that cannot be represented by PARAFAC. A TV network executive who is
planning programming based on this data, for example, would need to know not only that “Humor”,
“Sensitivity” and “Violence” aspects are salient to the viewer, but also how these aspects interact
differently for individuals.
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